Algorithms and Applications for the
Estimation of Stream Statistics In
Networks

Aviv Yehezkel

Ph.D. Research Proposal

SupervisorProf. ReuverCohen




Overview

A Motivation

A Introduction
I CardinalityEstimationProblem
I WeightedProblem

A A Unified Scheme for Generalizing Cardinality Estimators to Sum
Aggregation

A Efficient Detection of Application Layer DDoS Attacks by a Stateless
Device

A FutureResearch
I CombiningCardinality Estimation anfampling
I Estimationof Set Intersection

A New Results



Motivation for Sketching

We often need to monitor network links for guantities suah:

A Elephantflows (traffic engineering, billing)

A Numberof distinctflows, averageflow size(queue management)
A Flowsize distribution(anomaly detectiop

A Perflow traffic volume(anomaly detection)

A Entropyof the traffic (anomaly detection)
A X



Motivation for Sketching

Network monitoring at high speed ¢hallenqging

A Packetsarrive every?25nson a 40Gbps(OG768)link
A Hasto useSRAMor per-packetprocessing

A Per-flow statetoo largeto fit into SRAM
A Classicasolution ofsampling is not accura@ue to the low sampling rate dictated by
the resourceconstraints



Sketching

A Main idea:
i Use asmall fixed sizstorage to store only thé Y 2 & (0 A YinfdRriafion abautthe stream
elements, asummaryof the data= the sketch
I Process the stream of data (packetsbire pass
I No need to storeper-flow states for each flow

I Employprobabilistic algorithnon the sketch to get an accuragstimationof the wanted quantity

A What sketchto store?
A What algorithm to use to get accurate estimationsunbiased & small variance




Introduction

A In this research we preserketchbasedalgorithms for the estimation of different
stream statistics

A We analyze their efficiency and statistical performance (bias and variance), and use
these algorithms to develop new applications for various networking tasks

A We beginwith the ¢cardinality estimation problene and study its generalized
weighted estimation problem

A We use our weighted estimatdor developing nevechemes that allow stateless
Network layerappliance:
I To determine in realime the Application layer loatmposed onts endserver
I Todetect Application layer attacks



Cardinality Estimation Problem



Motivation

Given a very long stream of elements with repetitions,

How many are distinct?



Cardinality of a Stream

A Let0 be a stream of elements with repetitions
A U is the number of elements called tlsé&ze

A ¢ the number of distinct elements calleghrdinality

00—

A The problem:
computethe cardinality n irone pasand withsmallfixed memory
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ExactSolution

A Maintain distinct elementsiready seen

0O 0eoeo—
t 1

counter =3 counter=4

A One pass, but memoiiy order of n

A Lower boundm(¢) memory needed
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Data Sampling

A Onlya small sample of the dataésllected (marked in redand thenanalyzed

0O 0z00:€

A Sensitive to thearrival orderand to therepetition pattern

A Low accuracy
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Sketchbased Solution

A Main idea:
A relaxthe constraint of exact value of the cardinality
A An estimatewith good precision is sufficient for the applications

A Several algorithms:
A Probabilistic counting
A HyperLogLog
A Linear Counting
A Min Count
AX o

13



SketchbasedSolution

A Elements of M are hashed tandom variables in (0,1)

co-eeeeee—

0 Yo
A Idea: usehe maximumminumumto estimatethe cardinality

A One pass
A Constant memory

14



SketchbasedSolution

A Elements of M are hashed tandom variables ind(1)

A Intuition:
A If there arel0distinct elements

A Expect the hash values to be spaced abeth apart from each other

AMW@ G —
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Sketchbased Solution

-o-e-e@eEe

Yo

0—0—

100

AMG@ OW — T™WYXO

A Estimatedcardinality = 3.405

A Actual cardinality= 4



Chassain@\lgorithm

A Simulatem different hash functions
A m maximaQ FQ B Q

A Estimate =2
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Chassain@\lgorithm

AQ D —

AB(p

Q) D B— L

A Therefore,
A Estimate = D ¢

B
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Chassain@\lgorithm

A Relative error p ¥y/a for a memory of m words

A Minimal variance unbiased estimator (MVUE)
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Formal Definition

Instance:
A stream of elementsyfty M8 hy with repetitions, and an integei
Leté be the number of different elements, denoted tfgﬁQFB Q

Obijective:
Find an estimate of ¢husing onlyd storage units, wheré L &




Min/Max Sketches

A Usea different hash functions
A Hash every elementy to & uniformly distributed hashed valuéQ ()
A Remember only the minimum/maximum value for each hash funéfon

A Use thesad values to estimateé



Generic Max Sketch Algorithm

Algorithm 1

1. Usea different hash functions

2. For every’Q and every input elementy, compute Q w

3. Let'Q | A@(w)} be the maximum observed value f&R
4. InvokeD 1 ¢ 0Oi OMROAHHO to estimatet




Other Estimation Techniques

A Bit pattern sketches

A The elementsire hashed into &it vectorand the sketch holds thegical OR
of allhashed values

A Bottom-a sketches
A maintain them minimalvalues

31



Weighted Cardinalityestimation Problem



Weighted Sunof a Stream

A Each element is associated withvaight

A The goal is to estimate theeighted sunt of the distinct elements

ceaeee— ¢ &
D 0.25
B 1
Z 1.25
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Application Example

A Stream oflP packetseceived by a serveé ho B8 how
A Each packet belongs to a flow (connecti8iQ 8 HQ

A Each flowQ imposes a load on the server
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Formal Definition

Instance:
A stream of weighted elements ho M8 hio with repetitions, and an integek

Let € be the number of different elements, and l&t be the weight oiQ

Objective:
Find an estimate) of 0 BU husing onlyd storage units, wheré& L &




A Unifled Scheme for Generalizing
Cardinality Estimators to Sum Aggregation



Our Contribution

A Aunified scheme for generalizing amyn/maxestimatorfor the unweighted
cardinality estimation problem to a@stimatorfor the weightedcardinality
estimation problem

37



Previous Works
A Cohen, 1997

A ExponentiablistributionQQ D O 1§
A Minimal hash value is store®) | E IQQ
i "Q DOWMBL ) Owm
A Canbe obtained as a direct result afur scheme

A JeffreyConsidineFeifeiLi, George&ollios and John W. Byers, 2004

A Bit pattern sketch

I Integer weights only
I Storage isot fixed

A Ourscheme does not assume integereightsand uses fixednemory

38



Observation

A All min/max sketches can be viewed as a two step computation:
1. Hasheach element uniformly into0( 1)
2. Store only theminimum/maximumobserved value

39



The Unifled Scheme

A Inthe unified scheme we only changeep (1)and hash each element into a Beta
distribution.

A The parameters of the Beta distribution are derived from treght of the element

40



Beta Distribution

A Definedover the interval (01)

A Has the following probability anclmulative density functions (PDF a@BF):

PIX=2€(0,1)] = T (3T (a)

_I_a—l (1 . I,)_.-’j'—l

- . ’ F(ﬂ—'_‘j) a—1 _AB—1 g
P[X ﬂ:?:]_./n F(.S)F(o:)m (1 — )" dz,
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Beta Distribution

A Known (and useful) identities:

Beta(1,1) ~ U(0, 1)
and

Beta (a. f) ~ 1 — Beta (5. ).

42



Beta Distribution

Lemma:

Let & hx B hx  be independent RVs, wher@ D 6 ‘Q §udip)
Then,

| A@ D 6Q4BY p)

43



Corollary
A For every hash function,
QI A} *x | AMrtp)}
x | A@ Qdpip)} D " A QW)

A Thus, estimating thealue ofl by Algorithml, isequivalentto estimating the
value of] inthe" A QW distribution of E

44



The UnifledScheme

For estimating theveighted sum
A Instead of associating each element withraform hashed value

A Q(®) DY mip

A We associaté with a RV taken from Beta distribution

A'Q () D6 Q ¢uiip)
AU istheSf SYSy i Qa ¢SAIKU

45



Generic Max Sketch Algorithmweighted

Algorithm 2
A Used different hash functions
A For everyQ and every input elemenb:
1. compute Q w
2. transform to"Q(®) D 6 Q §ucip)

A LetQ | A{&) (&)} be the maximum observed value fér
A Invokel i ¢ @Oi O'MTQIHHO to estimate the value ob

46



The UnifledScheme

A Practically if

‘Q(®) D "Y(tp)

A Then
X

dw) D 6 Q¢ucip)



Distributions Summary

Unweighted "Q D6 Qd¢edp)

Weighted QD6 Qoxd BU Ip

48



The UnifledScheme

A The same algorithm that estimatésin the unweightedcase can estimaté in
the weighted case

AD1 ¢ ®Oi 0 Bdéexadhfthe same procedure used to estimate the
unweightedcardinality in Algorithm 1



The Unifled Scheme Lemma

Estimatingu by Algorithm2 is equivalentto estimating & by Algorithml.

Thus, Algorithn2 estimates0 with the same variancandbiasas that of the
underlying procedure used by Algorithim

50



Stochastic Averaging

A Presented bylajoletin 1985
A Use2 hash functionsnstead of &

A Overcomethe computational cost at the price okgligible statistical efficiency
In the estimato&variance

51



Stochastic Averaging

A Use2 hash functions:
1. O w D {pkh hi}
2. O(w) D TYTip

A Remembethe maximum observed value efich bucket

A The generalization to weighted estimator is similar

52



Generic Max SketcAlgorithm (StochasticAveraging)

Algorithm 3
1. Usec different hashfunctions
1. 'O w D {pk h}
2. "0(®) D 7Y rip)
2. For every input elemend computeO (w) AT B (®)

3. Let'Q | A (w) s O(®w) Q be the maximum observed
value in the] Qliuéket

4. InvokeD i € ©OIi 0 OB BEDITYO to estimates

53



Corollary (Stochastic Averaging)

AA sO(®w! 'Qs-=sizeof] Qhuéket
i W — U(\/:>

A For every hash function,

Q| AB @O Q" AGAD) D" A (A

A Thus, estimating thealue of— by Algorithm 3, igquivalentto estimating the
value of] inthe" A QW distribution ofE
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The UnifiledScheme (Stochastic Averaging)

For estimating theveighted sum
A Instead of associating each element withraform hashed value

A0 (w) DY mip

A We associat@ with a RV taken from Beta distribution

A0 (@) D6 Qduiip)

A0 is theelement@weight

A A B, (, 0 isthe sum of the elements in the€h bucket

Ao — 0 |—BO
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Generic Max Sketch AlgorithmWeighted
(Stochastic Averaging)

Algorithm 4
1. Usec different hash functions
1. 'O w D {pk h}
2. 'O(w) D TYrip
2. For every input elemenb:
1. compute O(@AT B (®)
2. transform to 'O () D 6 ‘Q ¢Ucip)

3. Let'Q | A@(®) s O(®) Q bethe maximum observed
value in thek@h bucket

4. InvokeD i ¢ @Ol o OB AOEITMO to estimated

56



The UnifledScheme

A Practically if

0 () D "™Ttp)

A Then

0(®) D 6 Q§usip)



Distributions Summary

£, -
Unweighted QD6 Q C(Tec)rp)

BU

Weighted Q DOQOe —1Ip

0 a

A4
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The UnifledScheme

A The same algorithm that estimatésin the unweightedcase can estimaté in
the weighted case

AD1 ¢ ®Oi 0 QdseratiMbe same procedure used to estimate the
unweighted cardinality in Algorithra



The Unifled Scheme Lemma

Estimatingu by Algorithm4 is equivalentto estimating € by Algorithm3.

Thus, Algorithmal estimates 0 with the same variancandbiasas that of the
underlying procedure used by AlgoritHin

60



Stochastic Averaging Effect on Variance (Unweighted)

A Bringscomputational efficiencat the cost of alelayedasymptotical regime
(Lumbrosg 2010)

i Whennis sufficiently large, the variance of each buckiee® isnegligible
i How largen shouldbe to obtain negligible variancef @ in the unified scheme?

A Whenthe normalized standard deviatiomf eachw is pmt , there is negligible
loss of statisticagfficiency

i For example, wheh p manda p ooool[—] —  pT

61



Stochastic Averaging Effect on Variance (Weighted)

A Assuming that— D T

B

I The normalized standard deviationu=® n[ﬁ] —0a p T

A However other choices of the weights mayR S ftHisddund for bigger values of

62



Stochastic Averaging Effect on Variance (weighted)
Random Distribution of Weights

A Assumehat the weightsd are drawn from aandom distribution
A Using the variance definition:

Yjmw;  nElwj]  Elwi] - E?[w] + B [w]

w2 n?E?[w;] nk? [w]

= (1 5]

Therefore,

m 2 _ T Y.
Var [by./E [be]] = Z-?:; Y= (1 4 Yar ['“*'-'?]) .

w n E2? [wj]

The unified scheme can deal with unbounded
number of weights as long as:
1. Weights are positive

2 wwb FTO U isasmall constant




Transformation BetweerDistributions

A Each element is hashéd®) D °Y 1ip

A Then,
I Some estimators transforrfiw) into another distribution
A For exampleHyperLogLo@Geometrical)
I The unified schemt#ransformsQw into aBetadistribution
A w DO6Qowp
A InverseTransform Method:

6D™rmp) + O (0)DO

where,

A F is the CDF of distribution D

A F ismonotonically nordecreasingunction
A "O is the inverse function

64



TransformationBetweenDistributions

A In general!dw) is transformed intdQ (®) O (d®))
I InverseTransfomMethod

A The estimator makeep the original uniform hasheghlue
I Without transformation
i In this cas€,0w W

source transformation
u ~ U(0,1) ua ~ Beta(a, 1)
u ~ U(0,1) (1—(1— u)%) ~ Beta (1, 3)
: In(1—u .
u~U(0,1) | [log,_, (1 —u)| = ]nﬂ_ﬁi ~ Geom (p)
u~ U(0,1) — Inu'/" ~ Exp (w)

Table 2.1: Distribution Transformation Examples



The UnifledScheme

A The desired distribution i Q 0 @Whp

I #$3K0 w
i #SEBI OO0 67

A0 (dn) "dod) D6 Qy6dp)

T InverseTransform Method

‘Q(®) D "Yrtp)

To sum up:
Q) *

D 6 'Q§uip)
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Weighted Generalization fo€Continuous U(0,1)
with Stochastic Averaging

A Chassaing estimator

A Minimal variance unbiased estimator (MVUE)

A The estimator uses uniforvariables
I Notransformation ismeeded,& (0) ©

A Estimate= 5

A Standard error p1/a
A Storage size & & bits

To generalize thisstimator

Estimate = 5

But now,

QN | AAW)

I A@ (@) 7 }
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Weighted Generalization fo€Continuous U(0,1)
with m hash functions

A Maximumlikelihoodestimator

A Theestimator uses exponential random variables with paraméter
i 'O 0 1 ®DOwp

A Estimate = —

i whereQ | A@I1 TQ ®

A Standard error p1/a
A Storage size @ & bits

68



Weighted Generalization fo€Continuous U(0,1)
with m hash functions

To generalize this estimator
Estimate= z

But now,

a0 iAol 0@ | ABI T

This generalization is identical to the algorithpresented by Cohenl 995

69



WeightedHyperLogLogvith Stochastic Averaging

A Bestknown algorithmin termsof the tradeoff betweerprecision andtoragesize

A The estimator uses geometric random variables with sucgessability %2
i 'O o 6 1 1T 60D "0Q¢ @ic

A Estimate =
B

i whereQ [ AG 11 O©OW@WOs O(w) 0

A Standard error p8t TV
A Storage size z & bits

70



WeightedHyperLogLogvith Stochastic Averaging

To generalize this estimator

Estimate=
B

But now,

7z

M AT TOMWT Os O 0

A The extended algorithm offers the best performance, in terms of statistical

accuracyand memory storage,among all the other known algorithms for the
weighted problem

71



Conclusion

A We showed how to generalizevery min/max sketclo a weightedversion

A Thescheme carbe usedfor obtaining known estimators and new estimators in a
genericway

A Theproposedunified schemaises theunweightedestimator as a black boand
manipulateshe input using properties of thBeta distribution

A We proved that estimating the weightestim by outunified scheme istatistically
equivalentto estimating theunweightedcardinality

A In particular, weshowedthat the new scheme can be used to extend tHigperLoglLog
algorithm tosolve the weightegbroblem

A The extended algorithm offers the best performance, in terms of statistical accuracy
and memory storage, among all the other known algorithms for the weight@blem



Efficient Detection of Application Layer
DDoS Attacks by a Stateless Device



DoSand DDoS

Denialof Service Attack@oS
A Maliciousattempt to make a server or @etwork resourceunavailable tausers

A Themost common typés floodingthe target resource witlexternalrequests
I The overload prevents/slowle resource fronresponding to legitimatéraffic

Distributed Denial of Service AttadloDo9
A DoSattack where the attack traffic is launché&@m multiple distributed sources.

A ADDOoS attack is much harderdetect
I Multiple attackersto defendagainst



Application DDoS Attacks

A Seeminglylegitimate and innocentequests whose goal te forcethe server to
allocate a lot of resources in response to every singigiest

A Canbe activated from amall numbeiof attackingcomputers

A Examples:
I HTTRequest attacks:

A Legitimate, heavy HTTP requests are sent to a web selvaemattempt to consume a lot of its resources.
A Eachrequest is very short, but thgerver needs$o work very hard to serve it.

I HTTPS/SSL requestacks
A Work against certain SSL handshéiactions, takingadvantage of théneavy computation use by SSL

I DNSequestattacks
A Theattacker overwhelms the DNS server with a serielegitimate orillegitimate DNSequests

75



Application DDoS Attacks

Application DDoS attacks are more difficult to deal with than classical DDoS:

A Thetraffic pattern isindistinguishabldrom legitimatetraffic

A Thenumber ofattackingmachinescanbe significantlysmaller

I Typically it is enough for the attacker to send only hundreds of resourtEnsive requests
Instead of flooding the server with millions of TCP SYNSs, as in a volubiatte attack

76



DDoS Protection Architecture

A Mostly multitier:

private or
public <
cloud

Tier—1: stateless
routers/switches

Tier—2: stateful
TEVErse Proxy

or load balancer

Tier—3: stateful
Application Firewall,
SSL termunation etc.

Figure 1.1: A multi-tier DDoS protection architecture
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DDoSProtection Architecture

A Asstrong as its weakedink
I Oftenthis weakest link is tieR or 3
I Will be the first to collapse in targeted Application layer DD@a®ack.

A Itis generally assumed that Application layer attacks cannot be detected liyshe
tier devices, but only by tie2 and tier3 devices, which arstateful, this is because:

I Many devices

Doesnot haveflow awarenesscannot perform peiflow tasks

Dedicated tdast performancejts processing tasks must be simple and cheap

Lacks deep knowledge of tieed applicationsand is unable to keep track of the association
betweenpacketsflows-applications



Previous Work

A Stateless devices usuadigtimate the load imposed on a remote serbgr
estimatingthe number ofdistinctflows
I Cardinality estimation problem

A Can detect anomalies when the number of distinct flows becosaspiciously high

I PossiblypDoSattack

I Alternative: monitor theentropy of selected attributem the received packets and compare to
pre-computed profile

A Previously proposedchemes have considered all flows as imposingtmeload

I This is clearly not true in a realistic case where fwghkload requests require significantly more
server efforts than simple ones

I Wesolve this problem bgreclassifyinghe incoming flows and associating them with different

weightsaccording taheir load
79



Our Contribution

A We show how a tierl stateless device can acquire significapplication layer
Information anddetect Application layeattacks

A Early detection wilhfford better overall protection
I Triggerghe opening of more tieR and tier3 devices
I Triggerghe invocation of special tiet packetbased filteringules,which will reduce thdoad

80



Basic Scheme

A Main idea:
I classifyincoming flows according tihe load each of them imposes on theerver

I flows that impose different loads shoullee mappedn advance into different
TCP/UDPorts

A Consequentlya stateless routethat receivesa packet can look at the Protocol field and the
destination port number ithe packef@header in order to know the load imposed on the
server by the flow to whickthe packet belongs

I Thetotal load imposed on the end server during a specific timerval is
L B U z¢g
A 8 is the number of weightlasses
A ¢ is the number of flows belonging to class

I executean algorithm thatestimates thenumber of flows for each class.

81



Basic Scheme

Formally,
1. preclassity the flows according to their loads wq, ws. ..., we:

2. estimate the number of flows for each class n;;

[} - {:_-' o
3. return w = ) _,_, w; - 7.

The total load imposed on the end server during a specific time interval Is
O B 0 z¢
A 6 is the number of weight classes
A ¢ is the number of flows belonging to class

Theproblem of measuringthe total load imposed on the web server during a
specified time is now translated into the problem afstimating the number of
flows for each class of weights.

82




HyperLogLog

Algorithm 3.1 The HyperLogLog algorithm for estimating the number of flows
1. Initialize m registers: C,Cs,...,C,, to 0.

2. For each monitored packet whose flow ID is x; do:

(a) Let p=|—1log, (hi(x;))]| be the leftmost 1-bit position of the hashed value.

(b) Let j = ho(x;) be the bucket for this flow.
(¢) C;  max{C;, p}.

3. To estimate the value of n do:

(a) Z < (31, 2= s the harmonic mean of 27

(b) return o, m*Z, where

= (m [y~ (log, (¥55))" du) ™.
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Example: HTTP

Assignhe same TCP port @l HTTP requestlhat impose thesameload on server:

A Requestshat requirea lot of processingan be assignetd port 8090(weight0 )
A Requeststhat requireslightly lesare assigned to po@091(with weight «: o)
A And so oiX
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Implementation

A Straightforwardfor every Applicatiotayer protocothat admits aone-to-one
mapping to alrCP or a UDP port
I BEachTCRor UDHilow is associated witbne application layer instance

A Howevernot the casdor HTTP, because abersistentconnectioré property.
I Allowsthe client tosendmultiple HTTP requests over the same TGRnection (flow)
I Cannottell in advance which or how many requests will be sent over the sameection

A Thesolution we propose is to map &ljht requeststo one port, and to map each
heavierrequest to itsown port

I The weightassociated with the light requests will take into account their resocmesumption
andthe possibility that multiple light requests mafharethe sameconnection

85




Enhanced Scheme

A Main idea:

I Instead of solving the cardinality estimation problem once per eda$s, the enhanced scheme
solvesthe weighted cardinality estimatioproblem

I The totalload is estimated directly, without estimating the number of flows in egabs

A Theenhanced scheme with] X pstorageunits performs better (has much better
variance)than any configuration of the basic scheme, even if tladter usesfactor
FMmore storageunits.

I Moreover the enhanced scheme is agnosodhe distribution of the weights and does not need
a priori information abouthe distributionof the weightclasses



WeightedHyperLogLog

Algorithm 3.2 A generalization of Algorithm 3.1 for estimating the weighted cardinality of
the flows

1. Initialize m registers: Cy,Cs,...,Cy to 0.

2. For each monitored packet whose flow 1D is x; with weight w; do the same as Algorithm

1
3.1, except that p = L— log, (h](aj.i))”fJ.

3. To estimate the weighted sum do:

(a) Z < (30, 27Ci)™" s the harmonic mean of 267

(b) return o,,m*Z, where

O, = (m. fﬂm (log.z (ﬁ—g))m du)_l.

87



Basic Scheme vs. Enhanced Scheme

A Minimal variance of basic s.chemeD:L D— = varianceof enhanced scheme
F

A Theenhancedscheme hasmaller variance than the minimal variance of the basic
scheme

A Whenthe number of different classes —, then the variancef the basic scheme
IS Infinite.
I Moreover even if there are only a few classes, andgstaistical inefficiencgan be tolerated,
the basic scheme needs a priori information on th&tribution ofthe weights, while the
enhanced scheme does not
A The enhanced scheme with 76 storage units performs better (has much better
variance) than any configuration of the basic scheme, even if the latter uses factc
O more storageunits.

i aslong as the number of weigltlasses satisfy  —, and this requirement is satisfied because

m is usually vergmall .



Basic Scheme vs. Enhanced Scheme

A Minimal variance of basic scheme—

D— = varianceof enhanced scheme
F

2
n
HENN( )
"y — 2

Var [w] = Var E wy - n;] =
C 2
N wy - n
E w} - Var [m] = E E
my — 2
=1 =1

c .
2 . 2
wi - nj

C
J(my,mo,...,mc) = E 5 where m = E my.

=1

The optimal choice can be found using Lagrange multipliers:

— C 12
J(my,mo,....,mac,A) = Z ::z n; —A (m Z m;)

I=1 =1

Using derivatives and solving the equation yield:

(my — 2) = w; - m/ V.
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Estimating the Load Variance

A Main idea:

I Theweighted algorithms useful for performingnanagementasks
A Addinga virtual machine to a weberver
A Adjustingthe load balancingriteria, etcX

I Not useful fordetectingan extreme and sudden increagethe load imposed on the server due
to an Applicationlayer attack.

A Definitions:

I n(t) =number of active flows sampled at tim@ver the lasfT units of time
I w(t) =weighted sum of these flows
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Estimating the Load Variance

A 0 (0) isa randomvariable thatestimates the weighted sum of the flows sampled
during timeintervalfi L] ¢ X

A Unbiased estimator, wget that

t)} — w( ZH‘J

E [@(t)é] = (1)

Var [J?)] =K {JEE] — E {1:(?}]2
— Z w;(t)* — (Z w;(t))?
= Z w;(t)* — w(t)?.
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Load Variance

Algorithm 3.3 FEstimating the variance of the weighted sum of the flows sampled at [t—T, t]

1. Estimate w(t) using Algorithm 3.2;

2. Estimate Y w;(t)* using Algorithm 3.2; this time, associate each flow with the square

of its original weight, i.e., w?;

—

3. Compute and return Var [-w(t)] using Fq. 3.4.

A Variancecan be affected not only by excessive load imposed Hgw

connectionsoriginated by an attacker, but also by an excessive number of new
legitimate connections

A Todistinguish between the two cases, weormalizethe varianceby dividingit
by the number of flowa.
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Normalized Load Variance

Algorithm 3.4 FEstimating the normalized variance of the weighted sum of the flows sampled
at [t — T, 1]
1. Estimate n(t) using Algorithm 3.1;

——

2. Estimate Var {uﬂ(t]] using Algorithm 3.3;

- 2_ .. 2
3. Return ij(;}m wit)”
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Simulation Results
Detecting the load imposed on a server

A We study the requesteceived by the main web server thie Technion campus
A Assigrto each request a weight that represents the load it imposes orséreer
A Comparehe results ofthe weightedscheme to theesults oftwo benchmarks:

A Actual:

I I?eterminesthe real Ioaq imposed on the web server durggry consideretime interval by
OZ2YLJzuAy3ad UGUKS aSNmeNa I SN IS NbalLlZzyas
I Actual is expected toutperform ourscheme
I Of course, such schemecannot employedy a stateless intermediategevice
A Number of Flows:
I UsesHyperLogLotp estimate the number odlistinct flowsduring each timgoeriod.

A Howto determine in advance the load imposed on $ever byeveryrequest?

I Becauseve do not have access to the server, but only to its log fllesassigrweights according
to the average size of the response file sent by the serveati request



Simulation Results
Detecting the load imposed on a server

Actual Weighted Sum (Algorithm 3.2) Number of Flows (Algorithm 3.1)
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(a) Trace 1: 30 minutes with A = 60 seconds

We can see a strong correlatidmetween the load estimated by our scheme addttual:

A For exampleActualshows a temporary heavy load on the server aftéminutes a load that is clearly detected
by ourscheme (in blue)

A Anotherpeak, att =22, isalso detectedoy ourscheme (in green) 95



Simulation Results
Detecting the load imposed on a server

We can see a strong correlation between the load estimated by our scheme/Asstdal:
A Actualshows temporary heavy loads on teerver att =28 (yellow)andt =32 (orange) both clearly detected by
our scheme as well.
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