
Algorithms and Applications for the
Estimation of Stream Statistics in

Networks

Aviv Yehezkel

Ph.D. Research Proposal

Supervisor: Prof. Reuven Cohen

Overview
ÅMotivation

ÅIntroduction

ïCardinality Estimation Problem

ïWeighted Problem

ÅA Unified Scheme for Generalizing Cardinality Estimators to Sum
Aggregation

ÅEfficient Detection of Application Layer DDoS Attacks by a Stateless
Device

ÅFuture Research

ïCombining Cardinality Estimation and Sampling

ïEstimation of Set Intersection

ÅNew Results
2

Motivation for Sketching

We often need to monitor network links for quantities such as:

ÅElephantflows (traffic engineering, billing)

ÅNumber of distinct flows,average flow size(queue management)

ÅFlow size distribution(anomaly detection)

ÅPer-flow traffic volume(anomaly detection)

ÅEntropyof the traffic (anomaly detection)

ÅΧ

3

Motivation for Sketching

Network monitoring at high speed is challenging

ÅPackets arrive every 25nson a 40 Gbps(OC-768) link

ÅHas to use SRAM for per-packet processing

ÅPer-flow state too largeto fit into SRAM

ÅClassical solution of sampling is not accuratedue to the low sampling rate dictated by
the resource constraints

4

Sketching

ÅMain idea:
ïUse a small fixed sizestorage to store only the άƳƻǎǘ ƛƳǇƻǊǘŀƴǘέinformation about the stream

elements, a summaryof the data = the sketch

ïProcess the stream of data (packets) in one pass

ïNo need to store per-flow states for each flow

ïEmploy probabilistic algorithmon the sketch to get an accurate estimationof the wanted quantity

ÅWhat sketchto store?

ÅWhat algorithm to use to get accurate estimations? = unbiased & small variance

5

Introduction

Å In this research we present sketch-basedalgorithms for the estimation of different
stream statistics

ÅWe analyze their efficiency and statistical performance (bias and variance), and use
these algorithms to develop new applications for various networking tasks

ÅWe begin with the άcardinality estimation problemέand study its generalized
weighted estimation problem

ÅWe use our weighted estimator for developing new schemes that allow a stateless
Network layer appliance:
ïTo determine in real-time the Application layer loadimposed on its end server

ïTo detectApplication layer attacks

6

Cardinality Estimation Problem

7

Given a very long stream of elements with repetitions,

How many are distinct?

Motivation

8

Cardinality of a Stream

ÅLet ὓbe a stream of elements with repetitions

Åὔis the number of elements called the size

Åὲthe number of distinct elements called cardinality

C D B B Z D B D

ÅThe problem:
compute the cardinality n in one pass and with small fixed memory

Element Multi

C 1

D 3

B 3

Z 1

╝
▪

9

Many Applications

Traffic analysis

Attacks detection

Genetics

Linguistic

and moreΧ

10

ExactSolution

ÅMaintain distinct elements already seen

counter = 3 counter = 4

ÅOne pass, but memory in order of n

ÅLower bound: ɱὲmemory needed

C D B B Z D B D

11

Data Sampling

ÅOnly a small sample of the data is collected (marked in red), and then analyzed

ÅSensitive to the arrival orderand to the repetition pattern

ÅLow accuracy

C D B B Z D B D

12

Sketch-based Solution

ÅMain idea:

Årelax the constraint of exact value of the cardinality

ÅAn estimate with good precision is sufficient for the applications

ÅSeveral algorithms:

ÅProbabilistic counting

ÅHyperLogLog

ÅLinear Counting

ÅMin Count

ÅΧΦ

13

Sketch-basedSolution

ÅElements of M are hashed to random variables in (0,1)

Å Idea: use the maximum\minumumto estimate the cardinality
ÅOne pass
ÅConstant memory

14

0 1½
C DBZ

C D B B Z D B D

Sketch-basedSolution

ÅElements of M are hashed to random variables in (0,1)

Å Intuition:

ÅIf there are 10 distinct elements,

ÅExpect the hash values to be spaced about th apart from each other

Å άὥὼ

15

Sketch-based Solution

C D B B Z D B D

16

Ὤ πȢστχ

0 1½
CὬὅ πȢστχ

Sketch-based Solution

C D B B Z D B D

17

Ὤ πȢχχσ

ὬὈ πȢχχσ

0 1½
C D

Sketch-based Solution

C D B B Z D B D

18

Ὤ πȢχχσ

Ὤὄ πȢυρς

0 1½
C DB

Sketch-based Solution

C D B B Z D B D

19

Ὤ πȢχχσ

Ὤὄ πȢυρς

0 1½
C DB

Sketch-based Solution

C D B B Z D B D

20

Ὤ πȢχχσ

Ὤὤ πȢρσω

0 1½
C DBZ

Sketch-based Solution

C D B B Z D B D

21

Ὤ πȢχχσ

ὬὈ πȢχχσ

0 1½
C DBZ

Sketch-based Solution

C D B B Z D B D

22

Ὤ πȢχχσ

Ὤὄ πȢυρς

0 1½
C DBZ

Sketch-based Solution

C D B B Z D B D

23

Ὤ πȢχχσ

ὬὈ πȢχχσ

0 1½
C DBZ

Sketch-based Solution

C D B B Z D B D

24

0 1½
C DBZ

Å άὥὼ πȢχχσ

ÅEstimatedcardinality = 3.405

ÅActual cardinality= 4

ChassaingAlgorithm

ÅSimulate m different hash functions

Åm maxima ὬȟὬȟȣȟὬ

ÅEstimate =
В

25

ChassaingAlgorithm

ÅὬ Ḑ

ÅВρ Ὤ ḐВ

ÅTherefore,

ÅEstimate =
В

Ḑὲ

26

ChassaingAlgorithm

ÅRelative error ρȾά for a memory of m words

ÅMinimal variance unbiased estimator (MVUE)

27

Formal Definition

Instance:

A stream of elements ὼρȟὼςȟȣȟὼίwith repetitions, and an integer ά

Let ὲbe the number of different elements, denoted by ὩρȟὩςȟȣȟὩ

Objective:

Find an estimate ὲof ὲȟusing only ά storage units, where άḺὲ

28

Min/Max Sketches

ÅUse άdifferent hash functions

ÅHash every element ὼ to άuniformly distributed hashed values Ὤ ὼ

ÅRemember only the minimum/maximum value for each hash function Ὤ

ÅUse these άvalues to estimate ὲ

29

Generic Max Sketch Algorithm

Algorithm 1

1. Use άdifferent hash functions

2. For every Ὤ and every input element ὼ, compute Ὤ ὼ

3. Let Ὤ ÍÁØὬ ὼ be the maximum observed value for Ὤ

4. Invoke ὖὶέὧὉίὸὭάὥὸὩὬȟὬȟȣȟὬ to estimate ὲ

30

Other Estimation Techniques

ÅBit pattern sketches

ÅThe elements are hashed into a bit vectorand the sketch holds the logical OR
of all hashed values

ÅBottom-άsketches

Åmaintain the m minimal values

31

Weighted Cardinality Estimation Problem

32

Weighted Sum of a Stream

ÅEach element is associated with a weight

ÅThe goal is to estimate the weighted sum ύof the distinct elements

C D B B Z D B D

◌ В◌ͅ░
Ȣ Ȣ Ȣ

Element Weight

C 0.5

D 0.25

B 1

Z 1.25

33

Application Example

ÅStream of IP packetsreceived by a server ὼȟὼȟȣȟὼ

ÅEach packet belongs to a flow (connection) ÅȟὩȟȣȟὩ

ÅEach flow Ὡimposes a load ύ on the server

ÅThe weighted sumύ Вύ represents the total load imposed on the server

34

Formal Definition

Instance:

A stream of weighted elementsὼȟὼȟȣȟὼwith repetitions, and an integer ά

Let ὲbe the number of different elements, and let ύ be the weight of Ὡ

Objective:

Find an estimate ύ of ύ Вύȟusing only άstorage units, where άḺὲ

35

A Unified Scheme for Generalizing
Cardinality Estimators to Sum Aggregation

Our Contribution

ÅAunified scheme for generalizing any min/max estimatorfor the unweighted
cardinality estimation problem to an estimator for the weightedcardinality
estimation problem.

37

Previous Works
ÅCohen, 1997

ÅExponential distribution ὬὩ ḐὉὼὴύ

ÅMinimal hash value is stored, Ὤ ÍÉÎὬὩ

ï Ὤ ḐὉὼὴВύ Ὁὼὴύ

ÅCan be obtained as a direct result of our scheme

ÅJeffrey Considine, FeifeiLi, George Kollios, and John W. Byers, 2004

ÅBit pattern sketch
ï Integer weights only

ï Storage is not fixed

ÅOur scheme does not assume integer weights and uses fixed memory

38

Observation

ÅAll min/max sketches can be viewed as a two step computation:

1. Hasheach element uniformly into (0, 1)

2. Store only the minimum/maximumobserved value

39

The Unified Scheme

Å In the unified scheme we only change step (1)and hash each element into a Beta
distribution.

ÅThe parameters of the Beta distribution are derived from the weight of the element.

40

Beta Distribution

ÅDefined over the interval (0, 1)

ÅHas the following probability and cumulative density functions (PDF and CDF):

41

Beta Distribution

ÅKnown (and useful) identities:

42

Beta Distribution

Lemma:

Let ᾀȟᾀȟȣȟᾀ be independent RVs, where ᾀḐὄὩὸὥύȟρ

Then,

ÍÁØᾀ Ḑ ὄὩὸὥВύȟρ

43

Corollary

ÅFor every hash function,

Ὤ ÍÁØὬ ὼ ͯ ÍÁØὟπȟρ

ͯ ÍÁØὄὩὸὥρȟρ Ḑ"ÅÔÁÎȟρ

ÅThus, estimating the value of Îby Algorithm 1, is equivalentto estimating the
value of ɻin the "ÅÔÁɻȟρ distribution of È

44

The Unified Scheme

For estimating the weighted sum:

Å Instead of associating each element with a uniform hashed value

ÅὬ ὼ ḐὟπȟρ

ÅWe associate it with a RV taken from a Beta distribution

ÅὬ ὼ ḐὄὩὸὥύȟρ

Åύ is the ŜƭŜƳŜƴǘΩǎ ǿŜƛƎƘǘ

45

Generic Max Sketch Algorithm - Weighted

Algorithm 2

ÅUse άdifferent hash functions

ÅFor every Ὤ and every input element ὼ:

1. compute Ὤ ὼ

2. transform to Ὤͮὼ ḐὄὩὸὥύȟρ

ÅLet Ὤ ÍÁØὬͮὼ be the maximum observed value for Ὤ

Å Invoke ὖὶέὧὉίὸὭάὥὸὩὬȟὬȟȣȟὬ to estimate the value of ύ

46

The Unified Scheme

ÅPractically, if

Ὤ ὼ ḐὟπȟρ

ÅThen,

Ὤὼ
Ⱦ
ḐὄὩὸὥύȟρ

47

Distributions Summary

48

Unweighted Ὤ ḐὄὩὸὥὲȟρ

Weighted Ὤ ḐὄὩὸὥ× Вύȟρ

The Unified Scheme

ÅThe same algorithm that estimates ὲin the unweightedcase can estimate ύin
the weighted case

ÅὖὶέὧὉίὸὭάὥὸὩis exactly the same procedure used to estimate the
unweightedcardinality in Algorithm 1

49

The Unified Scheme Lemma

Estimating ύ by Algorithm 2 is equivalentto estimating ὲby Algorithm 1.

Thus, Algorithm 2 estimates ύwith the same varianceand biasas that of the
underlying procedure used by Algorithm 1.

50

Stochastic Averaging

ÅPresented by Flajoletin 1985

ÅUse 2 hash functions instead of ά

ÅOvercome the computational cost at the price of negligible statistical efficiency
in the estimatorΩs variance

51

Stochastic Averaging

ÅUse 2 hash functions:

1. Ὄ ὼ Ḑ ρȟςȟȣȟά

2. Ὄ ὼ ḐὟπȟρ

ÅRemember the maximum observed value of each bucket

ÅThe generalization to weighted estimator is similar

52

53

Generic Max Sketch Algorithm (Stochastic Averaging)

Algorithm 3

1. Use ςdifferent hash functions

1. Ὄ ὼ Ḑ ρȟςȟȣȟά

2. Ὄ ὼ ḐὟπȟρ)

2. For every input element ὼcompute Ὄ ὼ ÁÎÄὌ ὼ

3. Let Ὤ ÍÁØὌ ὼ ȿὌ ὼ Ὧ be the maximum observed
value in the ƪΩǘƘbucket

4. Invoke ὖὶέὧὉίὸὭάὥὸὩὛὃὬȟὬȟȣȟὬ to estimate ὲ

Corollary (Stochastic Averaging)

ÅÂ ȿὌ ὼ Ὧȿ= size of ƪΩǘƘbucket

ïὦ ὕ

ÅFor every hash function,

Ὤ ÍÁØὌ ὼ ȿὌ ὼ Ὧ ͯ"ÅÔÁÂȟρḐ"ÅÔÁ
ὲ

ά
ȟρ

ÅThus, estimating the value of by Algorithm 3, is equivalentto estimating the

value of ɻin the "ÅÔÁɻȟρ distribution of È

54

The Unified Scheme (Stochastic Averaging)

For estimating the weighted sum:

Å Instead of associating each element with a uniform hashed value

ÅὌ ὼ ḐὟπȟρ

ÅWe associate it with a RV taken from a Beta distribution

ÅὌ ὼ ḐὄὩὸὥύȟρ

Åύ is the elementΩs weight

ÅÂ В ύ is the sum of the elements in the kΩth bucket

Åὦ ὕ Вύ

55

56

Generic Max Sketch Algorithm - Weighted
(Stochastic Averaging)

Algorithm 4

1. Use ςdifferent hash functions

1. Ὄ ὼ Ḑ ρȟςȟȣȟά

2. Ὄ ὼ ḐὟπȟρ

2. For every input element ὼ:

1. compute Ὄ ὼ ÁÎÄὌ ὼ

2. transform to Ὄͮὼ ḐὄὩὸὥύȟρ

3. Let Ὤ ÍÁØὌͮὼ ȿὌ ὼ Ὧ be the maximum observed
value in the kΩth bucket

4. Invoke ὖὶέὧὉίὸὭάὥὸὩὛὃὬȟὬȟȣȟὬ to estimate ύ

The Unified Scheme

ÅPractically, if

Ὄ ὼ ḐὟπȟρ

ÅThen,

Ὄ ὼ ḐὄὩὸὥύȟρ

57

Distributions Summary

58

Unweighted Ὤ ḐὄὩὸὥ
ὲ

Í
ȟρ

Weighted Ὤ ḐὄὩὸὥ
ύ

ά

Вύ

ά
ȟρ

The Unified Scheme

ÅThe same algorithm that estimates ὲin the unweightedcase can estimate ύin
the weighted case

ÅὖὶέὧὉίὸὭάὥὸὩὛὃis exactly the same procedure used to estimate the
unweighted cardinality in Algorithm 3

59

The Unified Scheme Lemma

Estimating ύ by Algorithm 4 is equivalentto estimating ὲby Algorithm 3.

Thus, Algorithm 4 estimates ύwith the same varianceand biasas that of the
underlying procedure used by Algorithm 3.

60

Stochastic Averaging ςEffect on Variance (Unweighted)

ÅBrings computational efficiencyat the cost of a delayed asymptotical regime
(Lumbroso, 2010)

ïWhen n is sufficiently large, the variance of each bucket size ὦ is negligible

ïHow large n should be to obtain negligible variance of ὦ in the unified scheme?

ÅWhen the normalized standard deviationof each ὦ is ρπ , there is negligible
loss of statistical efficiency

ïFor example, when Î ρπand ά ρπ ὠὥὶ ρπ

61

Stochastic Averaging ςEffect on Variance (Weighted)

ÅAssuming that
В

ρπ

ïThe normalized standard deviation = ὠὥὶ
В
ά ρπ

ÅHowever, other choices of the weights may άŘŜƭŀȅέthis bound for bigger values of n

62

Stochastic Averaging ςEffect on Variance (weighted)
Random Distribution of Weights

ÅAssume that the weights ύ are drawn from a random distribution

ÅUsing the variance definition:

63

The unified scheme can deal with unbounded
number of weights as long as:
1. Weights are positive
2. ὠὥὶύ ȾὉ ύ is a small constant

Transformation Between Distributions

ÅEach element is hashed Ὤὼ ḐὟπȟρ

ÅThen,
ïSome estimators transform Ὤὼ into another distribution

ÅFor example, HyperLogLog(Geometrical)

ïThe unified scheme transforms Ὤὼ into a Betadistribution

ÅὬͮ ὼ ḐὄὩὸὥύȟρ

Å Inverse-Transform Method:

64

όḐὟπȟρ ᵼ Ὂ όḐὈ

where,
Å F is the CDF of distribution D
Å F is monotonically non-decreasing function
Å Ὂ is the inverse function

Transformation Between Distributions

Å In general, Ὤὼ is transformed intoὬͮὼ Ὂ Ὤὼ

ï Inverse-TransfomMethod

ÅThe estimator may keep the original uniform hashed value
ïWithout transformation

ï In this case, Ὂὼ ὼ

65

The Unified Scheme

ÅThe desired distribution is ὄὩὸὥύȟρ

ï#$&ȡὋ ὼ ὼ

ï#$&ÉÎÖÅÒÓÅȡὋ ό όȾ

ÅὋ Ὤὼ Ὤὼ ḐὄὩὸὥύȟρ

ï Inverse-Transform Method

66

To sum up:

Ὤ ὼ ḐὟπȟρ Ὤ ὼ Ⱦ ḐὄὩὸὥύȟρ

Weighted Generalization for Continuous U(0,1)
with Stochastic Averaging

ÅChassaing estimator

ÅMinimal variance unbiased estimator (MVUE)

ÅThe estimator uses uniform variables
ïNo transformation is needed, & ό ό

ÅEstimate=
В

ÅStandard error = ρȾά

ÅStorage size σςzάbits

67

To generalize this estimator

Estimate=
В

But now,

Ὤ ÍÁØὬͮὼ ÍÁØὬ ὼ Ⱦ

Weighted Generalization for Continuous U(0,1)
with m hash functions

ÅMaximum likelihood estimator

ÅThe estimator uses exponential random variables with parameter 1
ïὊ ό ÌÎόḐὉὼὴρ

ÅEstimate =
В

ïwhere Ὤ ÍÁØÌÎὬ ὼ

ÅStandard error = ρȾά

ÅStorage size σςzάbits

68

Weighted Generalization for Continuous U(0,1)
with m hash functions

69

To generalize this estimator

Estimate=
В

But now,

Ὤ ÍÁØÌÎὬͮὼ ÍÁØÌÎὬ ὼ

This generalization is identical to the algorithm presented by Cohen, 1995

Weighted HyperLogLogwith Stochastic Averaging

ÅBest known algorithm in terms of the tradeoff between precision and storage size

ÅThe estimator uses geometric random variables with success probability ½
ïὊ ό ỗ ÌÏÇόỘḐὋὩέάρȾς

ÅEstimate =
В

ïwhere Ὤ ÍÁØỗÌÏÇὌ ὼỘȿὌ ὼ Ὧ

ÅStandard error = ρȢπτȾά

ÅStorage size υz άbits

70

Weighted HyperLogLogwith Stochastic Averaging

71

To generalize this estimator

Estimate=
В

But now,

Ὤ ÍÁØỗÌÏÇὌ ὼ Ⱦ ỘȿὌ ὼ Ὧ

ÅThe extended algorithm offers the best performance, in terms of statistical
accuracyand memory storage,amongall the other known algorithms for the
weightedproblem

Conclusion
ÅWe showed how to generalize every min/max sketch to a weighted version

Å The scheme can be used for obtaining known estimators and new estimators in a
generic way

Å The proposed unified scheme uses the unweightedestimator as a black box, and
manipulates the input using properties of the Beta distribution

ÅWe proved that estimating the weighted sum by our unified scheme is statistically
equivalentto estimating the unweighted cardinality

Å In particular, we showed that the new scheme can be used to extend the HyperLogLog
algorithm to solve the weighted problem

Å The extended algorithm offers the best performance, in terms of statistical accuracy
and memory storage, among all the other known algorithms for the weighted problem

72

Efficient Detection of Application Layer
DDoS Attacks by a Stateless Device

DoSand DDoS

Denial of Service Attack (DoS)

ÅMalicious attempt to make a server or a network resource unavailable to users

ÅThe most common type is flooding the target resource with external requests.
ïThe overload prevents/slows the resource from responding to legitimate traffic

Distributed Denial of Service Attack (DDoS)

ÅDoSattack where the attack traffic is launched from multiple distributed sources.

ÅA DDoS attack is much harder to detect
ïMultiple attackers to defend against

74

Application DDoS Attacks

ÅSeeminglylegitimate and innocentrequests whose goal is to force the server to
allocate a lot of resources in response to every single request

ÅCan be activated from a small numberof attacking computers

ÅExamples:
ïHTTP request attacks:

ÅLegitimate, heavy HTTP requests are sent to a web server, in an attempt to consume a lot of its resources.

ÅEach request is very short, but the server needs to work very hard to serve it.

ïHTTPS/SSL request attacks
ÅWork against certain SSL handshake functions, taking advantage of the heavy computation use by SSL

ïDNS request attacks
ÅThe attacker overwhelms the DNS server with a series of legitimate or illegitimate DNS requests

75

Application DDoS Attacks

Application DDoS attacks are more difficult to deal with than classical DDoS:

ÅThe traffic pattern is indistinguishablefrom legitimate traffic

ÅThe number of attacking machinescan be significantly smaller
ïTypically, it is enough for the attacker to send only hundreds of resource intensive requests,

instead of flooding the server with millions of TCP SYNs, as in a volumetric DDoS attack

76

DDoS Protection Architecture
ÅMostly multi-tier:

77

DDoS Protection Architecture

ÅAs strong as its weakest link
ïOften this weakest link is tier-2 or 3

ïWill be the first to collapse in a targeted Application layer DDoS attack.

Å It is generally assumed that Application layer attacks cannot be detected by the first
tier devices, but only by tier-2 and tier-3 devices, which are stateful, this is because:
ïMany devices

ïDoes not have flow awareness, cannot perform per-flow tasks

ïDedicated to fast performance,its processing tasks must be simple and cheap

ïLacks deep knowledge of the end applications,and is unable to keep track of the association
between packets-flows-applications

78

Previous Work
ÅStateless devices usually estimate the load imposed on a remote server by

estimating the number of distinct flows
ïCardinality estimation problem

ÅCan detect anomalies when the number of distinct flows becomes suspiciously high
ïPossibly DDoSattack

ïAlternative: monitor the entropy of selected attributesin the received packets and compare to
pre-computed profile

ÅPreviously proposed schemes have considered all flows as imposing the same load
ïThis is clearly not true in a realistic case where high-workload requests require significantly more

server efforts than simple ones

ïWe solve this problem by preclassifyingthe incoming flows and associating them with different
weightsaccording to their load

79

Our Contribution

ÅWe show how a tier-1 stateless device can acquire significant Application layer
information and detectApplication layer attacks

ÅEarly detection will afford better overall protection
ïTriggers the opening of more tier-2 and tier-3 devices

ïTriggers the invocation of special tier-1 packet-based filtering rules, which will reduce the load

80

Basic Scheme

ÅMain idea:

ïclassifyincoming flows according to the loadeach of them imposes on the server

ïflows that impose different loads should be mapped in advance into different
TCP/UDP ports
ÅConsequently, a stateless router that receives a packet can look at the Protocol field and the

destination port number in the packetΩs header in order to know the load imposed on the
server by the flow to which the packet belongs

ïThe total load imposed on the end server during a specific time interval is

ύ В ύ ὲz
Åὅis the number of weight classes

Åὲ is the number of flows belonging to class ὰ

ïexecute an algorithm that estimates the number of flows for each class.

81

Basic Scheme

82

The total load imposed on the end server during a specific time interval is

ύ В ύ ὲz
Å ὅis the number of weight classes
Å ὲ is the number of flows belonging to class ὰ

Formally,

The problem of measuringthe total load imposed on the web server during a
specified time is now translated into the problem of estimating the number of
flows for each class of weights.

HyperLogLog

83

Example: HTTP

Assign the same TCP port to all HTTP requests that impose the same load on server:

ÅRequests that require a lot of processingcan be assigned to port 8090 (weight ύ)

ÅRequests that require slightly lessare assigned to port 8091(with weight ◌ ◌)

ÅAnd so onΧ

84

Implementation

ÅStraightforward for every Application layer protocol that admits a one-to-one
mapping to a TCP or a UDP port
ïEach TCP or UDP flow is associated with one application layer instance

ÅHowever, not the case for HTTP, because of άpersistent connectionέproperty.
ïAllows the client to send multiple HTTP requests over the same TCP connection (flow)

ïCannot tell in advance which or how many requests will be sent over the same connection

ÅThe solution we propose is to map all light requests to one port, and to map each
heavierrequest to its own port
ïThe weight associated with the light requests will take into account their resource consumption

and the possibility that multiple light requests may sharethe same connection

85

Enhanced Scheme

ÅMain idea:
ï Instead of solving the cardinality estimation problem once per each class, the enhanced scheme

solves the weighted cardinality estimation problem

ïThe total load is estimated directly, without estimating the number of flows in each class

ÅThe enhanced scheme with □Ⱦ╒storage units performs better (has much better
variance) than any configuration of the basic scheme, even if the latter uses factor
╒more storage units.
ïMoreover, the enhanced scheme is agnostic to the distribution of the weights and does not need

a priori information about the distribution of the weight classes

86

Weighted HyperLogLog

87

Basic Scheme vs. Enhanced Scheme

ÅMinimal variance of basic scheme =
◌

□ ╒

◌

□
= variance of enhanced scheme

ÅThe enhanced scheme has smaller variance than the minimal variance of the basic
scheme

ÅWhen the number of different classes ὅ , then the variance of the basic scheme

is infinite.
ïMoreover, even if there are only a few classes, and the statistical inefficiency can be tolerated,

the basic scheme needs a priori information on the distribution of the weights, while the
enhanced scheme does not.

ÅThe enhanced scheme with άȾὅstorage units performs better (has much better
variance) than any configuration of the basic scheme, even if the latter uses factor
ὅmore storage units.

ïas long as the number of weight classes satisfy ὅ , and this requirement is satisfied because

m is usually very small.
88

Basic Scheme vs. Enhanced Scheme

ÅMinimal variance of basic scheme =
◌

□ ╒

◌

□
= variance of enhanced scheme

89

Estimating the Load Variance

ÅMain idea:
ïThe weighted algorithm is useful for performing management tasks

ÅAdding a virtual machine to a web server

ÅAdjusting the load balancing criteria, etcΧ

ïNot useful for detecting an extreme and sudden increasein the load imposed on the server due
to an Application layer attack.

ÅDefinitions:
ïn(t) = number of active flows sampled at time t over the last T units of time

ïw(t) = weighted sum of these flows

90

Estimating the Load Variance

Åύὸis a random variable that estimates the weighted sum of the flows sampled
during time interval [ǘ ҍ ¢Σ ǘ]

ÅUnbiased estimator, we get that

91

Load Variance

92

ÅVariance can be affected not only by excessive load imposed by a few
connections originated by an attacker, but also by an excessive number of new
legitimate connections.
ÅTo distinguish between the two cases, we normalize the variance by dividing it

by the number of flows n.

Normalized Load Variance

93

Simulation Results
Detecting the load imposed on a server

ÅWe study the requests received by the main web server of the Technion campus

ÅAssign to each request a weight that represents the load it imposes on the server

ÅCompare the results of the weighted scheme to the results of two benchmarks:

ÅActual:
ïDetermines the real load imposed on the web server during every considered time interval by
ŎƻƳǇǳǘƛƴƎ ǘƘŜ ǎŜǊǾŜǊΩǎ ŀǾŜǊŀƎŜ ǊŜǎǇƻƴǎŜ time.

ïActual is expected to outperform our scheme

ïOf course, such a scheme cannot employed by a stateless intermediate device

ÅNumber of Flows:
ïUses HyperLogLogto estimate the number of distinct flows during each time period.

ÅHow to determine in advance the load imposed on the server by every request?
ïBecause we do not have access to the server, but only to its log files, we assign weights according

to the average size of the response file sent by the server to each request
94

Simulation Results
Detecting the load imposed on a server

95

We can see a strong correlation between the load estimated by our scheme and Actual:
Å For example, Actual shows a temporary heavy load on the server after 17 minutes, a load that is clearly detected

by our scheme (in blue)
Å Another peak, at t = 22, is also detected by our scheme (in green)

Simulation Results
Detecting the load imposed on a server

96

We can see a strong correlation between the load estimated by our scheme and Actual:
Å Actual shows temporary heavy loads on the server at t = 28 (yellow) and t = 32 (orange), both clearly detected by

our scheme as well.

