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We study the stability of random scale-free networks to degree dependent attacks. We present
analytical and numerical results to compute the critical fraction pc of nodes that need to be removed
for destroying the network under this attack for different attack parameters. We study the effect
of different defense strategies, based on the addition of a constant number of links on network
robustness. We test defense strategies based on adding links to either low degree, mid degree or
high degree nodes. We find using analytical results and simulations that the mid degree nodes
defense strategy leads to the largest improvement to the network robustness against degree based
attacks. We also test these defense strategies on an Internet AS map and obtain similar results.

PACS numbers: 89.75.Hc, 87.23.Ge

In the past few years the study of large connected net-
work systems has become more and more popular [1–5].
The understanding that many real world networks, af-
fecting almost every part of the modern life, from brain
and biological systems to social systems, power grids and
the Internet, the WWW and etc., are represented by
new classes of random networks has led to breakdown of
standard theoretical models and inspired a new area of
research [1–15, 17, 20]. Many of these networks are char-
acterized by a power law distribution in their nodes de-
grees. Such networks are constructed by nodes connected
with links where the degree distribution P (k) which is the
probability that a node will have k links is:

P (k) ∼ k−γ . (1)

where γ is usually between 2 < γ < 3.
The scale-free character of these networks, represented

by having no characteristic degree per node, has led to
numerous unexpected results in many different properties
that are very different from the results in lattice models
and even ER random graphs [1–7]. One important prop-
erty that was studied is the robustness and resilience of
such networks under external attack or random failure.
In other words, the stability of such networks and their
ability to withstand progressive damage caused by suc-
cessive removals or failures of nodes [11]. This research
is aimed at getting a better understanding of the vul-
nerability of such networks in order to make them more
secure and robust.

We denote pc to be the critical fraction of removed
nodes needed for destroying the integrity of the network
and its topology. In general it has been observed that
complex networks show great stability even against large
number of repeated attacks or failures. For example, it
was shown that pc = 1 for random failures, i.e., in order
to destroy the network we have to practically remove
all the nodes [12]. On the other hand, one of the most
efficient attacks that were studied is an intentional attack
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where only the nodes with the highest degrees need to be
removed in order to destroy the network. In such attacks,
removing only a small fraction p of the nodes is sufficient
to destroy the network.

Although the intentional attack strategy is one of the
most efficient attack strategies, in most of the cases we
cannot use this attack as it requires complete knowledge
and understanding of the network topology in order to
be able to identify the highest connected nodes to be
removed. In many realistic cases this required informa-
tion is not available, does not exist or is not accessible.
Sometimes, only partial knowledge of the network topol-
ogy and its nodes is available. Therefore we want to find
other attack strategies whose implementation does not
rely on full knowledge of the network topology and its
nodes connectivity, thus we will present attack strategy
that only require partial knowledge of the network topol-
ogy.

In this letter we consider scale-free networks where the
robustness of each node depends on its degree, so the
probability of damaging a node by some attack or failure
depends on the degree k of the node. We study the stabil-
ity of those networks to degree dependent attacks where
the probability to remove node depends on its degree.
This method demands that nodes with higher degrees
will have higher probability to be removed.

Examples for such networks where higher degree nodes
are less robust can be found in a variety of fields. In so-
cial networks, the most connected members of the group
that have more links to other members are more visible
and therefore have a higher probability to be attacked
and removed from the group. Another example is of net-
work traffic. High loads on highly connected nodes [13],
which make them more vulnerable to attacks or failures.
In some cases breakdowns are due to cascades of fail-
ures caused by the dynamics of damage spreading [14].
In computer networks many breakdowns are caused by
congestion building [15].

We will also study the effect of different defense strate-
gies, based on the addition of a constant number of links
on network robustness against this attack and we will
find that the mid degree nodes are very important to the
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robustness of the network and in order to make the net-
work more robust under such attacks we have to defend
the mid degree nodes.

This work applies for the attack of many real world
networks where there is no full knowledge of the nodes
degrees that is required for intentional attack, and espe-
cially to immunization strategies where the high degree
nodes are usually not known [17].

We assign to each node a value π(ki) which represents
the probability that a node i with degree ki in network
with N nodes will be removed from the network and be-
come inactive.

π(ki) =
αki
Kmax

, 0 < α ≤ 1 . (2)

where Kmax ∼ mN1/(γ−1) is the maximal degree of
a node in the network [12]. The parameter α can be
thought to represent either the level of vulnerability of
nodes, or the level of knowledge of the node degrees
possessed by the attacker. We study this new attack
with both numerical simulations and analytical treat-
ment. First we will determine the critical percolation
threshold pc as a function of the network parameters γ,
N and m and the attack parameter α.

In the numerical treatment we first build the network
for a given γ. We fix the size of the network N , and the
minimal degree m and assign the degree k for each node
by using the power law distribution P (k) ∼ k−γ . In the
numerical simulations and the analytical treatment we
use the configuration model for the network construction
where no correlations exist between the degrees of neigh-
boring nodes. We then link random pairs of nodes that
have not been directly connected to each other already
and have not reached their given degree. We repeat this
process until the entire network is built.

To find the percolation threshold pc, we go over the
network and remove each node with probability π(ki).
For each removed node, all its links are cut and removed.
After each removal we calculate the two moments 〈k2〉
and 〈k〉 and divide them to get κ = 〈k2〉

〈k〉 . if κ ≥ 2, then a

giant component still exist in the network [16]. Once we
finished performing this procedure over the entire net-
work we start again scanning the network implementing
the same procedure until the network has no longer any
giant component left. We continue implementing this
procedure over the network until κ < 2. We then repeat
this procedure for different γ values and for different N
values and obtain pc.

In order to analytically find the percolation threshold,
let us denote by Ki the maximal degree of the network at
the ith scan. We assume to know the maximal degree of
the network at each scan. After d scans the probability
that a node of initial degree k will still be functional is:

ρ(k, d) =

d∏
i=1

(
1− αk

Ki

)
. (3)

Let us assume that we had to perform dc scans until we

managed to destroy the network. That is, until the per-
colation threshold is reached, and the giant component
disappears. Lets also assume that during the last scan
we went over only a fraction c of the network until it was
destroyed and the process ended. In order to compute
the probability that a node of degree k will still be func-
tional at the end of this process we have to consider the
two different cases stating whether this node was in the
c fraction or not. We get the following result:

ρ(k) = c

dc∏
i=1

(
1− αk

Ki

)
+ (1− c)

dc−1∏
i=1

(
1− αk

Ki

)
= cρ(k, dc) + (1− c)ρ(k, dc − 1) . (4)

The condition for the existence of a giant component
after d scans is as follows: if a node is reached through
a link with probability kP (k)/〈k〉 and has not been re-
moved with probability ρ(k, d) and the average number
of outgoing links per site is larger than 1, then a giant
component will exist [5]. Since a node is reached through
a link, it then has k−1 other links that can be traversed.

K∑
k=m

P (k)k(k − 1)

〈k〉
ρ(k, d) = 1 . (5)

Now we can numerically solve Eq. (5) to calculate dc
and substitutes this for calculating the critical threshold
of removed nodes:

pc =

K∑
k=m

P (k)(1− ρ(k)) . (6)

From Eq. (6) we can compute the percolation thresh-
old pc for a given network with size N and exponent γ as
a function of the attack parameter α. The lines in Fig.
1 represent the solutions of Eqs. (5) and (6), and we can
see that they are in good agreement with the simulations.
We can also see that for γ < 3, pc becomes smaller than 1
already for very small α values and decays with growing
α. According to Fig. 1 only a very small fraction of the
network has to be removed for destroying the network,
even without full knowledge of the network topology and
connectivity.

We now turn to study the best way to defend against
such attacks. To study the effect of different defense
strategies on the robustness and stability of a network
we consider different defense strategies based on addi-
tion of a constant number of links to different groups of
nodes in the network: low degree, mid degree and high
degree nodes, as well as very high degree nodes.

We test these strategies and find which defense strat-
egy is more efficient and leads to the highest network ro-
bustness improvement against degree based attacks. In
other words, we want to be able to identify the crucial
elements of the network that determine the robustness of
the network under degree based attacks.

Let us define “cut of the network” C(i, j) to include
all the nodes with initial degree i ≤ k ≤ j. We want to
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FIG. 1. (a) Values of pc vs α for different γ values: γ = 2.5
(◦), γ = 2.3 (�), γ = 2.7 (�) and γ = 2.1 (M). Symbols
represent simulation data for N = 105 nodes and lower cutoff
m = 1 averaged over 100 different network realizations. (b)
Values of pc vs α for γ = 2.5. Symbols represent simulation
data for N = 105 nodes and lower cutoff m = 1 averaged over
100 different network realizations. Solid line is the theoretical
prediction for the given parameters (Eqs. (5) and (6)). (c)
Same as (b), with γ = 2.3.

defend the network with nodes from this cut by inserting
E new links between nodes from C(i, j) only. We use
the same procedure as before and randomly select pairs
of nodes and link them. Let us define P (i, j) to be the
proportional size of the cut C(i, j) in the network:

P (i, j) =

j∑
k=i

P (k) . (7)

The probability that a node from C(i, j) will be chosen
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FIG. 2. (a) Values of pc vs E for different defense strategies
according to simulation data where N = 105 nodes with γ =
2.5, attack parameter α = 1 and lower cutoff m = 1 from
100 different network realizations. The symbols represent low
degree (1 ≤ k ≤ 2, �), mid degree (3 ≤ k ≤ 6, ◦), high degree
(7 ≤ k ≤ 10, �) and very high degree (10 ≤ k ≤ Kmax,
M) defense strategies . (b) Values of pc vs E for mid degree
nodes defense strategy for nodes with initial degree 3 ≤ k ≤
6. Symbols represent simulation data for N = 105 nodes,
γ = 2.5, attack parameter α = 1 and lower cutoff m = 1
averaged over 100 different network realizations. Solid line
is the theoretical prediction for the given parameters (Eqs.
(5) and (6)). (c) Same as (b), for low degree nodes defense
strategy for nodes with initial degree 1 ≤ k ≤ 2.

and get an additional link is 2E
P (i,j)N so after d scans the

probability that a node of initial degree i ≤ k ≤ j from
the cut C(i, j) will still be functional is now:

ρ(k, d) =
2Eρ(k + 1, d)

P (i, j)N
+

(
1− 2E

P (i, j)N

)
ρ(k, d) .(8)
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We can now use the same method that was described
before to find the number of scans dc needed to attack
and destroy the network and then find the fraction of re-
moved nodes pc. Notice that by the method suggested
here some small correlation is induced between neighbor-
ing nodes’ degrees, due to favoring connections between
similar degree nodes. Thus, the criterion of κ > 2 is only
a close approximation to the actual percolation thresh-
old. A more exact, but more complicated solution can be
obtained using the methods of [18, 19]. The results are
also verified using direct evaluation of the giant compo-
nent size (See Fig. 5).
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FIG. 3. Values of pc vs E for different defense strategies
according to simulation data where N = 105 nodes with γ =
2.5, attack parameter α = 1 and lower cutoff m = 1 from
100 different network realizations. The symbols represent low
degree (1 ≤ k ≤ 2, �), mid degree (3 ≤ k ≤ 6, ◦) and high
degree (7 ≤ k ≤ 10, �) defense strategies for (a) degree based
attack with π(k) = α (k/Kmax)2 and (b) degree based attack

with π(k) = α
√
k/Kmax.

We consider 4 such cuts: low degree nodes C1(1, 2),
mid degree nodes C2(3, 6), high degree nodes C3(7, 10)
and very high degree nodes C4(10,Kmax). We can use
the above procedure to obtain pc for the different cases
by using Eq. (8) with Eqs. (5) and (6). Fig. 2 shows
the simulation results for pc as a function of the number
of additional links E for the different defense strategies.
The lines in the figures represent the solutions of Eq. (6)
and show that the prediction of this analytical approxi-
mation is in good agreement with the simulation results.
According to these figures we can clearly see that the

percolation threshold pc of the mid degree nodes defense
strategy of nodes with initial degree between 3 ≤ k ≤ 6
is higher than the same pc for low and high degree nodes
defenses. We can see that by defending the mid degree
nodes, the network becomes more robust to degree based
attacks. For very high degree node defense we can see
that the network robustness actually decreases with the
added edges. This is due to adding edges to nodes that
are already well connected leading to only a small in-
crease in the network structural robustness, but also to
increased vulnerability due to stronger targeting of these
nodes under degree based attacks. We conclude that the
mid degree nodes are very important to the robustness
of the network and by inserting new links between those
nodes we can better defend our network and make it
much more resilient to such attacks.

In order to check the sensitivity of the general results
to different attack strategies we also simulated targeted
attacks with degree dependence of π(k) = α (k/Kmax)

2

and π(k) = α
√
k/Kmax. In both cases the mid degree

nodes defense proves to be the most efficient. Results are
presented in Fig. 3.

We will now test these results for the special case of
the Internet topology. We simulate the Internet using
real data of Internet structure according to the DIMES
project [20]. We use the measured map of the Internet’s
AS level autonomous systems as the initial network and
then use the procedure presented earlier to study the ef-
fect of the different defense strategies discussed above on
this network’s robustness and stability to degree based
attacks. Fig. 4 shows the simulation results for pc vs the
number of additional links E for different α values and for
different defense strategies. The figures verify our expec-
tations based on the random network case. We can see
that the critical threshold, pc, in the case of mid degree
nodes defense strategy is higher than the same pc for low
and high degree nodes defenses. We see that by defending
the mid degree nodes the Internet becomes more robust
to degree based attacks. This result verifies our previous
observation that defending the mid degree nodes leads to
the highest improvement of network robustness against
degree based attacks.

In summary, we have studied both offensive and defen-
sive aspects of large scale-free networks. From the offen-
sive point of view, we have studied the network robust-
ness under degree based attacks where the vulnerability
of each node depends on its degree. We showed that par-
tial knowledge of the network structure and connectivity
is sufficient to destroy the network by removing a very
small fraction of the nodes. For example, we found that
in a scale-free network with parameter γ = 2.5 and at-
tack parameter α = 1 the percolation threshold reduces
drastically from pc = 1 for random attack [11] to about
pc ∼= 0.2. In intentional attack when the network struc-
ture and topology are completely known , pc ∼= 0.07.

The Internet, as an example for a large scale-free net-
work [21], can be destroyed completely with very lit-
tle effort even without full information about the net-
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work topology. These results are applicable to other
networks and also important when we consider immu-
nization strategies where the high degree nodes through
which the virus spreads are not known in advance.

From the defensive point of view, we have studied the
effect of different defense strategies on the network ro-
bustness and tested different defense strategies based on
adding a constant number of new links to specific groups
of nodes. We showed that by defending the mid degree
nodes the network becomes more robust to degree based
attacks. We find that the nodes with the mid degrees
3 ≤ k ≤ 6 are very important to the network stability.
We have shown that in defense strategies of large scale-
free networks, one should focus on the mid degree nodes
in order to achieve the best results. We verified this re-
sult in the case of the Internet and showed that defending
the mid degree nodes makes the Internet more stable to
degree based attacks.

This work was partially supported by the BSF.
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FIG. 4. Values of pc vs E according to simulation data based
on AS graphs of the Internet from the past years. The symbols
represent low degree (1 ≤ k ≤ 2, �), mid degree (3 ≤ k ≤ 6,
◦) and high degree (7 ≤ k ≤ 10, �) defense strategies for
degree based attack with π(k) = α (k/Kmax). (a) The attack
parameter is α = 1 (b) The attack parameter is α = 0.7
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FIG. 5. Relative Size of the giant component, P∞ as a func-
tion of the fraction of removed nodes, p for mid degree defense
strategy with E = 2000 and attack parameter α = 1 for de-
gree based attack with π(k) = α (k/Kmax) for (a) simulated
scale free network with γ = 2.5, N = 105 nodes and lower
cutoff m = 1 and (b) the AS map network according to the
DIMES project [20].


