
A Unified Scheme for Generalizing Cardinality Estimators to Sum Aggregation

Reuven Cohen Liran Katzir Aviv Yehezkel
Department of Computer Science

Technion
Haifa 32000, Israel

Abstract

Cardinality estimation algorithms receive a stream of elements that may appear in arbitrary order, with possible repe-
titions, and return the number of distinct elements. Such algorithms usually seek to minimize the required storage at
the price of inaccuracy in their output. This paper shows how to generalize every cardinality estimation algorithm that
relies on extreme order statistics (min/max sketches) to a weighted version, where each item is associated with a weight
and the goal is to estimate the total sum of weights. The proposed unified scheme uses the unweighted estimator as a
black-box, and manipulates the input using properties of the beta distribution.

1. Introduction

Consider a very long stream of elements x1, x2, . . . , xs

with repetitions. Finding the number n of distinct ele-
ments is a well-known problem with numerous applica-
tions. The elements might represent IP addresses of pack-
ets passing through a router [8, 9, 16], elements in a large
database [12], motifs in a DNA sequence [10], or elements
of RFID/sensor networks [17]. One can easily find the ex-
act value of n in the following way. When a new element xi

is encountered, compare its value to every distinct (stored)
value encountered so far. If the value of xi has not been
seen before, keep it in the storage as well. After all the
elements are treated, count the number of stored elements.
This simple approach does not scale if storage is limited, or
if the computation performed for each element xi should
be minimized. In such a case, the following cardinality
estimation problem should be solved:

The cardinality estimation problem

Instance: A stream of elements x1, x2, . . . , xs with rep-
etitions, and an integer m. Let n be the number of
different elements, namely n = |{x1, x2, . . . , xs}|, and
let these elements be {e1, e2, . . . , en}.

Objective: Find an estimate n̂ of n using only m storage
units, where m ≪ n.

Several algorithms have been proposed for the cardinality
estimation problem. See [2] for a theoretical overview and
[16] for a practical overview with comparative simulation
results. In this paper we study the following weighted
generalization of the cardinality estimation problem:

The weighted cardinality estimation problem

Instance: A stream of weighted elements x1, x2, . . . , xs

with repetitions, and an integer m. Let n
be the number of different elements, namely
n = |{x1, x2, . . . , xs}|, and let these elements be
{e1, e2, . . . , en}. Finally, let wj be the weight of ej .

Objective: Find an estimate ŵ of w =
∑n

j=1 wj using
only m storage units, where m ≪ n.

An example of an instance for the cardinality estimation
problem is the stream: a, b, a, c, d, b, d. For this instance,
n = |{a, b, c, d}| = 4. An example of an instance for the
weighted problem is: a(3), b(4), a(3), c(2), d(3), b(4), d(3).
For this instance, e1 = a, e2 = b, e3 = c, e4 = d,w1 =
3, w2 = 4, w3 = 2, w4 = 3 and

∑
wj = 12.

As an application example, x1, x2, . . . , xs could be IP
packets received by a server. Each packet belongs to one
of n IP flows e1, e2, . . . , en. The weight wj can be the
load imposed by flow ej on the server. Thus,

∑n
j=1 wj

represents the total load imposed on the server by all the
flows to which packets x1, x2, . . . , xs belong.

The main contribution of this paper is a unified scheme
for generalizing any extreme order statistics estimator for
the unweighted cardinality estimation problem to an esti-
mator for the weighted cardinality estimation problem.

At first glance, it seems that a simple algorithm for
the weighted version is to apply the unweighted ver-
sion to each class of weights as follows: First, divide
the set {e1, e2, . . . , en} into r pairwise disjoint subsets
E1, E2, . . . , Er, such that all the elements of El have the
same weight cl, which is different from the weight ck of
any other subset Ek. Then, estimate the cardinality n̂l of
every subset El, and return ŵ =

∑r
l=1 n̂lcl. However, as

shown in Section 6, for such a solution to be efficient in
terms of the trade off between the required storage and the
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obtained precision, one should have a priori knowledge of
the distribution of the various weight classes. The unified
scheme presented in this work performs better than any
configuration of the aforementioned unweighted approach.
Moreover, the unified scheme is agnostic to the distribu-
tion of the various weight classes.

The rest of this paper is organized as follows: In Sec-
tion 2 we discuss previous works on both the unweighted
and weighted cardinality estimation problems. In Sec-
tion 3 we describe the beta distribution and recall several
properties that will be used later. We present our new
unified scheme in Sections 4 and 5. In Section 6 we com-
pare the unified scheme with a naive algorithm, and in
Section 7 we present a weighted version for several known
estimators. Finally, in Section 8 we conclude the paper.

2. Related Work

State-of-the-art cardinality estimators hash every ele-
ment ej into a low dimensional data sketch h(ej), which
can be viewed as a random variable (RV). The different
techniques can be classified according to the data sketches
they store for future processing. This paper focuses on
min/max sketches [2, 6, 11, 15], which store only the mini-
mum/maximum hashed values. The intuition behind such
estimators is that each sketch carries information about
the desired quantity. For example, when every element
ej is associated with a uniform RV, h(ej) ∼ U(0, 1),
the expected minimum value of h(e1), h(e2), . . . , h(en) is
1/(n + 1). The hash function guarantees that h(ej) is
identical for all the appearances of ej . Thus, the existence
of duplicates does not affect the value of the extreme or-
der statistics. The intuition behind the new unified scheme
presented in this paper is that each RV carries information
about the weight of the corresponding element, and each
sketch carries information about the total weight.

There are other cardinality estimation techniques other
than min/max sketches. The first paper on cardinality es-
timation [7] describes a bit pattern sketch. In this case, the
elements are hashed into a bit vector and the sketch holds
the logical OR of all hashed values. Bottom-m sketches [4]
are a generalization of min sketches, which maintain the
m minimal values, where m ≥ 1. Stable distribution
sketches [13] generate a sketch using a vector dot prod-
uct. A comprehensive overview of the different techniques
is given in [2, 16].

Previous works have also dealt with the weighted prob-
lem. A statistically optimal weighted estimator for con-
tinuous variables is given in [3]. This estimator can be
obtained as a direct result when the unified scheme pro-
posed in this paper is applied to continuous max sketches.
In [5], the weighted problem with integer weights is solved
using binary representations. The number of storage units
is not fixed, because it depends on the weights. In contrast,
the proposed scheme does not assume integer weights, and
uses fixed memory. Another weighted estimator, based on
continuous bottom-m sketches, is given in [4]. However,

bottom-m sketches require maintaining a sorted list of the
bottom-m values, which is more computationally demand-
ing than keeping the m separate minimum/maximum val-
ues, as in the proposed unified scheme.

3. The Beta Distribution

We observe that all min/max sketches can be viewed as
a two step computation: (a) hash each element uniformly
into (0, 1); and (b) store only the minimum/maximum ob-
served value1. In the unified scheme we only change step
(a) and hash each element into a beta distribution. The
parameters of the beta distribution are derived from the
weight of the element. In this section, we describe the beta
distribution and two of its properties that will be used in
the unified scheme.

The Beta (α, β) distribution is defined over the interval
(0, 1) and has the following probability and cumulative
density functions (PDF and CDF respectively):

P [X = x ∈ (0, 1)] =
Γ (α+ β)

Γ (β) Γ (α)
xα−1(1− x)β−1 (1)

P [X ≤ x] =

∫ x

0

Γ (α+ β)

Γ (β) Γ (α)
xα−1(1− x)β−1dx, (2)

where Γ(z) is the gamma function, defined as∫∞
0

e−ttz−1dt. Using integration by parts, the gamma
function can be shown to satisfy Γ(z + 1) = z · Γ(z).
Combining this with Γ(1) = 1 yields Γ(n) = (n − 1)! for
every integer n. Two other known beta identities are [14]:

Beta (1, 1) ∼ U(0, 1) (3)

and

Beta (α, β) ∼ 1− Beta (β, α) . (4)

A key property of the beta distribution, which we use
in our unified scheme is as follows:

Lemma 1.
Let z1, z2, . . . , zn be independent RVs, where zi ∼
Beta (wi, 1). Then,

n
max
i=1

zi ∼ Beta

(
n∑

i=1

wi, 1

)
.

Proof:

P [zi ≤ z] =

∫ z

0

wi · zwi−1dx = zwi

P [
n

max
i=1

zi ≤ z] =
n∏

i=1

P [zi ≤ z] =
n∏

i=1

zwi = z
∑n

i=1 wi .

1Some estimators (e.g. [6]) transform the uniform hashed values
to induce a different distribution, and only then store the mini-
mum/maximum observed value. In Section 7.1 we will consider such
estimators.
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The first equation follows by setting α = wi and β = 1 in
Eq. (2), and by the fact that Γ(wi + 1) = wiΓ(wi). The
second equation is due to the multiplication of independent
variables.

The next Lemma is a symmetric minimum version of
the former one:

Lemma 2.
Let z1, z2, . . . , zn be independent RVs, where zi ∼
Beta (1, wi). Then,

n
min
i=1

zi ∼ Beta

(
1,

n∑
i=1

wi

)
.

Proof:

n
min
i=1

zi = − n
max
i=1

(−zi)

= 1− n
max
i=1

(1− zi) ∼ 1− n
max
i=1

Beta (wi, 1)

∼ 1− Beta

(
n∑

i=1

wi, 1

)
∼ Beta

(
1,

n∑
i=1

wi

)
.

The first and second equations are due to algebraic ma-
nipulations. The first and third distribution identities are
from Eq. (4), and the second is due to Lemma 1.

4. The Unified Scheme

Let x1, x2, . . . , xs be the values of a stream of elements
with repetitions, such that |{x1, x2, . . . , xs}| = n and xi ∈
{e1, e2, . . . , en}. Let each element ej be associated with
a weight wj . This implies that if two elements xi1 and
xi2 are equal (represented by the same element ej), their
weights are also equal. Let w =

∑n
j=1 wj be the value we

want to estimate.
Min/max sketch estimators use a hash function to map

every element xi to U(0, 1), and then remember only the
minimum/maximum hashed value. If only one hash func-
tion is used, the sketch estimates the value of n with
an infinite variance. To bound the variance, min/max
sketches use m different hash functions in parallel and
use their combined statistics for the estimation. With
m hash functions, any (unweighted) min/max sketch as-
sociates each element xi with m uniform hashed values
hk(xi), 1 ≤ k ≤ m. The estimator remembers the mini-
mum/maximum observed value for each hash function hk,
and uses these m values to estimate the number n of dif-
ferent elements. We first present this generic algorithm
and then show how it can be generalized for the weighted
cardinality problem. We focus on max sketch estimators,
but similar algorithms can be developed for min sketches
as well.

Algorithm 1.
A generic max sketch algorithm for the cardinality
estimation problem

1. Use m different hash functions, h1, h2, . . . , hm. For
every hk and every input element xi, compute hk(xi).

Let h+
k =

s
max
i=1

{hk(xi)} be the maximum observed

value for hash function hk.

2. Invoke ProcEstimate(h+
1 , h

+
2 , . . . , h

+
m) to estimate

the number n of different elements.

ProcEstimate() is the specific cardinality estimate pro-
cedure. Different algorithms employ different procedures,
some of which are discussed in Section 7.2. Consider one
of the hash functions hk. Assuming that hk(x) ∼ U(0, 1),
then by Eq. (3) and Lemma 1 we get:

Corollary 3.

For every hash function, h+
k =

s
max
i=1

hk(xi) ∼
n

max
i=1

U(0, 1)

∼ n
max
i=1

Beta (1, 1) ∼ Beta (n, 1) holds. Thus, estimating

the value of n by ProcEstimate() in Algorithm 1 is equiv-
alent to estimating the value of α in the Beta (α, 1) distri-
bution of h+

k . �

The intuition behind our unified scheme is that instead
of associating each element xi with a uniform hashed
value hk(xi), we associate it with a RV taken from a
Beta (wj , 1) distribution, where wj is the element’s weight.
Technically, we first hash xi uniformly hk(xi) ∼ U(0, 1).

Then, we transform2 hk(xi) to h̃k(xi), such that h̃k(xi) ∼
Beta (wj , 1). Hence, and by Lemma 1, we have h̃+

k ∼
Beta

(
w =

∑n
j=1 wj , 1

)
instead of h+

k ∼ Beta (n, 1) as in

the unweighted case. Thus, and by Corollary 3, the same
algorithm that estimates n in the unweighted case can es-
timate w in the weighted case.

Algorithm 2.
A generic max sketch algorithm for the weighted
cardinality estimation problem

1. Use m different hash functions, h1, h2, . . . , hm. For
every hk and every xi, compute hk(xi) ∼ U(0, 1) and

then convert hk(xi) into h̃k(xi) such that h̃k(xi) ∼
Beta (wj , 1). Let h̃+

k =
s

max
i=1

{
h̃k(xi)

}
.

2. Invoke ProcEstimate(h̃+
1 , h̃

+
2 , . . . , h̃

+
m) to estimate

the value of w.

The key point is that ProcEstimate() is exactly the
same procedure used to estimate the unweighted cardinal-
ity n in Algorithm 1.

Lemma 4.
Estimating w by Algorithm 2 is equivalent to estimat-
ing n by Algorithm 1. Thus, Algorithm 2 estimates w
with the same variance and bias as that of the underly-
ing ProcEstimate() procedure used by Algorithm 1.

2We discuss the transformation from a uniform distribution to
the beta distribution in Section 7.1.
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Proof: From Lemma 1 follows that for every hash

function hk, h̃+
k =

s
max
i=1

{
h̃k(xi)

}
∼ Beta (w, 1). Thus,

and by Corollary 3, the distribution of the input ele-
ments for ProcEstimate() in Algorithm 2 is exactly as
the distribution of the input elements for ProcEstimate()
in Algorithm 1: Beta (α, 1), where α is the parameter
to be estimated. Finally, from Corollary 3 follows that
ProcEstimate() estimates the value of α in both cases.

5. Reducing the Number of Hash Functions Using
Stochastic Averaging

Algorithms 1 and 2 use m different hash functions in
order to obtain a better precision. In certain applications,
the computational burden renders the scheme infeasible
even for m = 10. Stochastic averaging [7] is a method to
overcome the computational cost at the price of reduced
statistical efficiency3 in the estimator’s variance, which is
negligible in this case. The main idea is to use only two
hash functions: the first for assigning a bucket (one of m)
for every element xi, and the second for associating every
element xi in every bucket with a U(0, 1) value4. The es-
timator then stores the maximum observed value of each
bucket. We denote by H1 the hash used for bucketing and
by H2 the hash used for generating the sketches. Formally,
H1(xi) ∼ U{1, 2, . . . ,m} and H2(xi) ∼ U(0, 1). We first
incorporate this concept into the generic max sketch algo-
rithm for the cardinality estimation problem (Algorithm 1)
and then into the unified scheme for the weighted cardinal-
ity estimation problem (Algorithm 2). As in the previous
section, we consider max sketch estimators, but the same
idea is applicable for min sketches as well.

Algorithm 3.
A generic max sketch algorithm for the cardinality
estimation problem using stochastic averaging

1. Use two hash functions: H1(xi) ∼ U{1, 2, . . . ,m}
and H2(xi) ∼ U(0, 1). For every input ele-
ment xi, compute H1(xi) and H2(xi). Let h+

k =
s

max
i=1

{H2(xi) |H1(xi) = k} be the maximum observed

value in the k’th bucket.
2. Invoke ProcEstimateSA(h+

1 , h
+
2 , . . . , h

+
m) to estimate

the number n of different elements.

Note that ProcEstimateSA() in Step (2) is different
from ProcEstimate() in Algorithm 1 and Algorithm 2.
In Section 4 we defined h+

k to be the maximum observed
value for the k’th hash, and showed in Corollary 3 that it
satisfies h+

k ∼ Beta (n, 1); namely, estimating the value of
n by ProcEstimate() is equivalent to estimating the value

3See the discussion regarding “statistical efficiency” at the end of
this section.

4In fact, it is possible to use a single hash function, as proposed
in [7]. In this case, the first logm bits are used for bucketing.

of α in the Beta (α, 1) distribution of h+
k . In the following

analysis we show an equivalent result for the stochastic
averaging case. To this end, (a) let h⃗+ = (h+

1 , h
+
2 , . . . , h

+
m)

be the vector of the maximum observed values in each
bucket; (b) let bk be the size of the k’th bucket, namely,

bk = |{H1(xi) = k}|; and (c) let b⃗ = (b1, b2, . . . , bm) be the
vector of the bucket’s sizes. Since h+

k is the maximum of
bk uniformly distributed RVs, from Lemma 1 we get:

h⃗+ | b⃗ ∼ (Beta (b1, 1) ,Beta (b2, 1) , . . . ,Beta (bm, 1)) . (5)

From the Central Limit Theorems follows that bk is highly
concentrated around n

m . Specifically, bk = n
m ± O

(√
n
m

)
.

Substituting bk = n
m into Eq. (5) yields the following

corollary, which is the stochastic averaging equivalence of
Corollary 3:

Corollary 5.

For every hash function, h+
k =

s
max
i=1

{H2(xi) |H1(xi) = k)}

∼ Beta (bk, 1) ≈ Beta
( n

m
, 1
)
. Thus, estimating the value

of n
m by ProcEstimateSA() in Algorithm 3 is equivalent

to estimating the value of α in the Beta (α, 1) distribution
of h+

k . �

To generalize Algorithm 3 for solving the weighted prob-
lem using stochastic averaging, we employ the same idea
used for generalizing Algorithm 1, where each element xi

is associated with a variable taken from a Beta (wj , 1) dis-
tribution. Thus, we first use H1 to insert each element
xi into a random bucket 1 ≤ k ≤ m, and H2 to asso-
ciate xi with a uniformly distributed variable H2(xi) ∼
U(0, 1). Then, we transform H2(xi) to have a beta distri-

bution, H̃2(xi) ∼ Beta (wj , 1). Hence, and by Lemma 1,

we get h̃+
k ∼ Beta

(
w
m =

∑
{H1(xi)=k} wj , 1

)
instead of

h+
k ∼ Beta

(
n
m , 1

)
in the unweighted case.

Algorithm 4.
A generic max sketch algorithm for the weighted
cardinality estimation problem using stochastic av-
eraging

1. Use two hash functions: H1(xi) ∼ U{1, 2, . . . ,m}
and H2(xi) ∼ U(0, 1). For every xi, compute
H1(xi) and H2(xi), and then convert H2(xi) into

H̃2(xi) such that H̃2(xi) ∼ Beta (wj , 1). Let h̃+
k =

s
max
i=1

{
H̃2(xi) | H1(xi) = k

}
be the maximum ob-

served value in the k’th bucket.
2. Invoke ProcEstimateSA(h̃+

1 , h̃
+
2 , . . . , h̃

+
m) to estimate

the value of w.

Define h⃗+ = (h̃+
1 , h̃

+
2 , . . . , h̃

+
m) and let bk =∑

{H1(xi)=k} wj be the sum of the elements in the k’th

bucket. As for the unweighted case, when b⃗ is known,
from Lemma 1 follows that:

h⃗+ | b⃗ ∼ (Beta (b1, 1) ,Beta (b2, 1) , . . . ,Beta (bm, 1)) . (6)
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Again, from the Central Limit Theorems follows that
bk is highly concentrated around w

m . Specifically, bk =
w
m ± O

(√
1
m

∑n
j=1 w

2
j

)
. Substituting this into Eq. (6)

yields bk ∼ Beta
(
w
m , 1

)
, and the following equivalence of

Lemma 4:

Lemma 6.
Estimating w by Algorithm 4 is equivalent to estimat-
ing n by Algorithm 3. Thus, Algorithm 4 estimates w
with the same variance and bias as that of the underly-
ing ProcEstimateSA() procedure used by Algorithm 3.

Proof: The proof is similar to that of Lemma 4.
The most thorough study of the statistical effect of

stochastic averaging on cardinality estimation [15] states
that “it brings computational efficiency at the cost of a
delayed asymptotical regime.” In other words, when n
is sufficiently large, the variance of each bucket size bk is
negligible. The question in turn is how large n should
be in order to obtain negligible variance of bk in the uni-
fied scheme as well. From our simulation study we de-
duce that for the unweighted case, when the normalized
standard deviation (i.e., the variance divided by the ex-
pectation) of each bk is less than 10−3, there is negligible
loss of statistical efficiency. For example, when n = 106

and m = 1000, we get Var [bk/E[bk]] ≈ m
n = 10−3. For

the weighted case, assuming that
∑n

j=1 w2
j

w2 = 10−6, we

get Var [bk/E[bk]] =
∑n

j=1 w2
j

w2 m = 10−3. However, other
choices of the weights may “delay” this bound for big-

ger values of n. To get a more natural view of
∑n

j=1 w2
j

w2 ,
let us assume that the weights wj are drawn from a ran-
dom distribution. Thereby, w =

∑n
j=1 wj = nE[wj ] and∑n

j=1 w
2
j = nE

[
w2

j

]
. Using the variance definition, we

obtain:∑n
j=1 w

2
j

w2
=

nE
[
w2

j

]
n2E2 [wj ]

=
E
[
w2

j

]
− E2 [wj ] + E2 [wj ]

nE2 [wj ]

=
1

n

(
1 +

Var [wj ]

E2 [wj ]

)
.

Therefore,

Var [bk/E[bk]] =
∑n

j=1 w
2
j

w2
m =

m

n

(
1 +

Var [wj ]

E2 [wj ]

)
.

It follows that the unified scheme can deal with unbounded
number of weights as long as: (1) the weights are positive;
and (2) Var [wj ] /E2 [wj ] is a small constant.

6. A Comparison Between the Unified Scheme and
a Naive Algorithm

In this section, the proposed unified scheme is compared
with the following naive algorithm: (1) partition the ele-
ments into classes according to their weights; (2) estimate

the cardinality of each class; (3) estimate the total weight
as the weighted sum of the class cardinality estimates.

Formally, let r be the number of classes and nl be
the number of elements whose weight is cl (i.e., nl =
|{ej | wj = cl}|). The total weight is w =

∑r
l=1 nlcl,

and the estimate made by the naive algorithm is ŵ =∑r
l=1 n̂lcl. We now show that the unified scheme outper-

forms this naive algorithm even if the latter has a pri-
ori knowledge about the optimal division of storage units
among the n̂l estimators; namely, it makes an optimal allo-
cation of storage units to each class, such that the variance
of the total weight estimation is minimized.

The bias and variance of ŵ in the naive algorithm are
affected by the variance of each individual estimate n̂l.
When an optimal ProcEstimate() is used both in Algo-
rithm 2 and in the naive algorithm, e.g., the one proposed
in [1], there is no bias, the variance of each individual es-
timate n̂l is n2

l /(m − 2) and the variance of Algorithm 2
is w2/(m − 2), where m is the number of hash functions
or buckets. Therefore, the cardinality estimation made by
the naive algorithm for each class is:

n̂l ∼ N
(
nl,

nl
2

m− 2

)
. (7)

Let ml be the number of storage units used to estimate nl.
The variance of the naive algorithm is therefore:

Var [ŵ] = Var

[
r∑

l=1

n̂lcl

]
=

r∑
l=1

Var [n̂l] c
2
l =

r∑
l=1

n2
l c

2
l

ml − 2
.

The first equation is due to the above definition of the
naive algorithm. The second equation follows the property
of the variance under linear transformation. The third
equation is from Eq. (7).

An optimal choice of (m1,m2, . . . ,mr) would minimize
Var [ŵ]. The constraints are that m =

∑r
l=1 ml and that

{m1,m2, . . . ,mr} are positive integers. We now show that
even if the integrality constraints on {m1,m2, . . . ,mr} are
relaxed, the variance of the unified scheme (Algorithm 2)
is smaller than that of the naive algorithm. Formally, the
optimal choice satisfies:

J (m1,m2, . . . ,mr) =
r∑

l=1

n2
l c

2
l

ml − 2
where m =

r∑
l=1

ml.

The optimal choice can be found using Lagrange multipli-
ers:

J̃ (m1,m2, . . . ,mr, λ) =
r∑

l=1

n2
l c

2
l

ml − 2
−λ

(
m−

r∑
l=1

ml

)
.

Using derivatives and solving the equation yield:

∂J̃

∂ml
= − n2

l c
2
l

(ml − 2)2
+ λ = 0.

(ml − 2) = nlcl/
√
λ.
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Note that m−2r =
∑r

l=1 (ml − 2) =
∑r

l=1 (nlcl) /
√
λ =

w/
√
λ. Therefore, the optimal choice is ml = 2+nlcl(m−

2r)/w and the minimal variance is w2/(m−2r), compared
to w2/(m− 2) for the unified scheme.

The above analysis implies that when the number of
different classes r is larger than m/2, or even only larger
than m/3 if the integrality constraints are imposed, then
the variance of the naive algorithm is infinite. Moreover,
even if there are only a few classes, and the statistical
inefficiency can be tolerated, the naive algorithm needs a
priori information on the distribution of the weights, while
the unified scheme does not.

7. Implementation

7.1. Transformations between distributions

In Algorithms 1, 2, 3 and 4, each element xi is associated
with a uniformly distributed RV h(xi) ∼ U(0, 1). How-
ever, some estimators transform the uniformly distributed
hashed values into another distribution. For instance,
in [2, 6], h(xi) is transformed into a geometrical distribu-
tion. In this case, the transformation into a discrete distri-
bution allows the number of bits required for storing every
number to be controlled. The unified scheme proposed in
this paper (Algorithms 2 and 4) transforms each hashed

value h(xi) into a beta distribution h̃(xi) ∼ Beta (wj , 1).
We now show how to transform a uniformly distributed
RV to any distribution, and in particular to the beta dis-
tribution.

Let x be an RV whose CDF is a monotonically non-
decreasing function F . The inverse function, also known
as the quantile function, F−1 is defined as

F−1(y) = inf {x : F (x) ≥ y} ,where 0 ≤ y ≤ 1. (8)

The Inverse –Transform Method [18] is a method for gen-
erating random numbers from any probability distribu-
tion whose CDF is known, using the observation where
if u ∼ U(0, 1) and x = F−1(u) then x has a CDF F .

Thus, to generate a random number x from distribution
D with CDF F , one can generate a random number u ∼
U(0, 1) and output x = F−1(u). Therefore, the generic al-
gorithms for the unweighted cardinality estimation prob-
lem, namely, Algorithm 1 and Algorithm 3, require con-
verting each hashed value h(xi) into h̃(xi) = F−1(h(xi)).
Note that the estimator may keep the original uniform
hashed values without any transformation, in which case
F (x) = x. In Table 1 we describe several transformation
examples (see [14, 19] for more details).

We now return to our generic algorithms for the
weighted cardinality estimation problem, namely, Algo-
rithm 2 and Algorithm 4. The desired distribution is
Beta (wi, 1), whose CDF and CDF inverse are Gmax(x) =
xwj and G−1

max(u) = u1/wj respectively. The Inverse –
Transform Method yields that G−1

max(h(xi)) = h(xi)
1/wj ∼

Beta (wj , 1). Namely, given a uniformly distributed

source transformation

u ∼ U(0, 1) u
1
α ∼ Beta (α, 1)

u ∼ U(0, 1) (1− (1− u)
1
β ) ∼ Beta (1, β)

u ∼ U(0, 1)
⌊
log1−p (1− u)

⌋
=
⌊
ln(1−u)
ln(1−p)

⌋
∼ Geom (p)

Table 1: Distribution Transformation Examples

hashed value h(xi) ∼ U(0, 1), taking h̃(xi) = h(xi)
1/wj

will satisfy h̃(xi) ∼ Beta (wj , 1). Thus, both Algorithms 2
and 4 require converting each hashed value h(xi) into

h̃(xi) = F−1(G−1
max(h(xi))), where G−1

max(u) = u1/wj .

7.2. Examples of Specific Generalized Algorithms

We now discuss several known algorithms for the car-
dinality estimation problem (Problem 1), and show how
each of them is extended to solve the weighted cardinality
problem (Problem 2), using Algorithm 2 or Algorithm 4.
For each known algorithm we present:

1. the final distribution it uses and the transformation
needed from the initial uniform hashed values;

2. the ProcEstimate() it uses for computing the estima-
tion; and

3. how this algorithm is extended using our unified
scheme to solve the weighted cardinality estimation
problem.

Continuous U(0,1) with stochastic averaging

This algorithm is presented in [1] and is the minimum
variance unbiased estimator (MVUE). We summarize its
key points here in brief:

1. The estimator uses uniform variables. Thus, no trans-
formation is needed and F−1(u) = u holds.

2. ProcEstimate(h+
1 , h

+
2 , . . . , h

+
m) = m(m−1)∑m

k=1 (1−h+
k )
.

3. To generalize this estimator, we convert each hashed
value into H̃2(xi) = G−1

max(H2(xi)) and then apply

Algorithm 4. Thus, we get that ŵ = m(m−1)∑m
k=1 (1−h̃+

k )

holds, where h̃+
k = max

{
(H2(ej))

1
wj |H1(ej) = k

}
.

HyperLogLog with stochastic averaging

The algorithm presented in [6] is the state-of-the-art
scheme for addressing Problem 1. We summarize its key
points here in brief:

1. The estimator uses geometric random variables with
success probability 1/2. Therefore, according to Ta-
ble 1, F−1(u) = ⌊− log2 u⌋ ∼ Geom (1/2).

2. ProcEstimate(h̃+
1 , h̃

+
2 , . . . , h̃

+
m) = αmm2∑m

k=1 2−h̃
+
k

, where

h̃+
k = max {⌊− log2 (H2(xi))⌋ | H1(xi) = k} and

αm =
(
m
∫∞
0

(
log2

(
2+u
1+u

))m
du
)−1

.
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3. To generalize this estimator, each hashed value
is converted into H̃2(xi) = F−1(G−1

max(H2(xi)))
and then Algorithm 4 is applied. Thus, we

get that ŵ = αmm2∑m
k=1 2−h̃

+
k

holds, where h̃+
k =

max
{⌊

− log2

(
H2(ej)

1
wj

)⌋
|H1(ej) = k

}
.

8. Conclusion

In this paper we showed how to generalize every car-
dinality estimation algorithm that relies on extreme order
statistics (min/max sketches) to a weighted version, where
each item is associated with a weight and the goal is to es-
timate the total sum of weights. The proposed unified
scheme uses the unweighted estimator as a black box, and
manipulates the input using properties of the beta dis-
tribution. We proved that estimating the weighted sum
by generalizing an underlying unweighted algorithm using
our unified scheme is statistically equivalent to estimating
the unweighted cardinality by the underlying unweighted
algorithm.
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