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Overview
• Motivation

• Introduction

– Cardinality Estimation Problem

– Weighted Problem

• A Unified Scheme for Generalizing Cardinality Estimators to Sum 
Aggregation

• Efficient Detection of Application Layer DDoS Attacks by a Stateless 
Device

• Future Research

– Combining Cardinality Estimation and Sampling

– Estimation of Set Intersection

• New Results
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Motivation for Sketching

We often need to monitor network links for quantities such as:

• Elephant flows (traffic engineering, billing) 

• Number of distinct flows, average flow size (queue management) 

• Flow size distribution (anomaly detection)

• Per-flow traffic volume (anomaly detection) 

• Entropy of the traffic (anomaly detection) 

• …
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Motivation for Sketching

Network monitoring at high speed is challenging

• Packets arrive every 25ns on a 40 Gbps (OC-768) link

• Has to use SRAM for per-packet processing

• Per-flow state too large to fit into SRAM

• Classical solution of sampling is not accurate due to the low sampling rate dictated by 
the resource constraints
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Sketching

• Main idea:
– Use a small fixed size storage to store only the “most important” information about the stream 

elements, a summary of the data = the sketch

– Process the stream of data (packets) in one pass

– No need to store per-flow states for each flow

– Employ probabilistic algorithm on the sketch to get an accurate estimation of the wanted quantity

• What sketch to store?

• What algorithm to use to get accurate estimations? = unbiased & small variance
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Introduction

• In this research we present sketch-based algorithms for the estimation of different 
stream statistics

• We analyze their efficiency and statistical performance (bias and variance), and use 
these algorithms to develop new applications for various networking tasks

• We begin with the “cardinality estimation problem” and study its generalized 
weighted estimation problem

• We use our weighted estimator for developing new schemes that allow a stateless 
Network layer appliance: 
– To determine in real-time the Application layer load imposed on its end server

– To detect Application layer attacks
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Cardinality Estimation Problem
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Given a very long stream of elements with repetitions, 

How many are distinct? 

Motivation
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Cardinality of a Stream

• Let 𝑀 be a stream of elements with repetitions 

• 𝑁 is the number of elements called the size

• 𝑛 the number of distinct elements called cardinality

C D B B Z D B D

• The problem: 
compute the cardinality n in one pass and with small fixed memory

Element Multi

C 1

D 3

B 3

Z 1

𝑵 = 𝟖
𝒏 = 𝟒
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Many Applications

Traffic analysis

Attacks detection

Genetics

Linguistic

and more…
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Exact Solution

• Maintain distinct elements already seen

counter = 3      counter = 4

• One pass, but memory in order of n

• Lower bound: Ω 𝑛 memory needed

C D B B Z D B D
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Data Sampling

• Only a small sample of the data is collected (marked in red), and then analyzed

• Sensitive to the arrival order and to the repetition pattern

• Low accuracy

C D B B Z D B D
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Sketch-based Solution

• Main idea: 

• relax the constraint of exact value of the cardinality

• An estimate with good precision is sufficient for the applications

• Several algorithms:

• Probabilistic counting

• HyperLogLog

• Linear Counting

• Min Count

• ….
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Sketch-based Solution

• Elements of M are hashed to random variables in (0,1)

• Idea: use the maximum\minumum to estimate the cardinality
• One pass
• Constant memory
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Sketch-based Solution

• Elements of M are hashed to random variables in (0,1)

• Intuition:

• If there are 10 distinct elements, 

• Expect the hash values to be spaced about  
1

10
th apart from each other

• 𝔼 𝑚𝑎𝑥 =
𝑛

𝑛+1
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Sketch-based Solution

C D B B Z D B D
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ℎ+ = 0.347

0 1½ 
Cℎ(𝐶) = 0.347



Sketch-based Solution

C D B B Z D B D
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ℎ+ = 0.773

ℎ(𝐷) = 0.773

0 1½ 
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Sketch-based Solution

C D B B Z D B D
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ℎ+ = 0.773

ℎ(𝐵) = 0.512
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Sketch-based Solution

C D B B Z D B D
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ℎ+ = 0.773

ℎ(𝐵) = 0.512
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Sketch-based Solution

C D B B Z D B D
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ℎ+ = 0.773

ℎ(𝑍) = 0.139
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Sketch-based Solution

C D B B Z D B D
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ℎ+ = 0.773

ℎ(𝐷) = 0.773
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Sketch-based Solution

C D B B Z D B D
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ℎ+ = 0.773

ℎ(𝐵) = 0.512
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Sketch-based Solution

C D B B Z D B D
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ℎ+ = 0.773

ℎ(𝐷) = 0.773
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Sketch-based Solution

C D B B Z D B D
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0 1½ 
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• 𝔼 𝑚𝑎𝑥 =
𝑛

𝑛+1
= 0.773

• Estimated cardinality  =  3.405

• Actual cardinality = 4



Chassaing Algorithm

• Simulate m different hash functions

• m maxima  ℎ1
+, ℎ2
+, … , ℎ𝑚

+

• Estimate   =   
𝑚−1

∑(1 −ℎ𝑘
+)
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Chassaing Algorithm

• ℎ𝑘
+ ∼

𝑛

𝑛+1

• ∑ 1 − ℎ𝑘
+ ∼ ∑

1

𝑛+1
=
𝑚

𝑛+1

• Therefore,

• Estimate   =
𝑚−1

∑(1 −ℎ𝑘
+)
∼ 𝑛
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Chassaing Algorithm

• Relative error ≈ 1 / 𝑚 for a memory of m words

• Minimal variance unbiased estimator (MVUE)
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Formal Definition

Instance:

A stream of elements  𝑥1, 𝑥2, … , 𝑥𝑠 with repetitions, and an integer 𝑚

Let 𝑛 be the number of different elements, denoted by  𝑒1, 𝑒2, … , 𝑒𝑛

Objective:

Find an estimate  𝑛 of  𝑛, using only  𝑚 storage units, where 𝑚 ≪ 𝑛

28



Min/Max Sketches

• Use 𝑚 different hash functions 

• Hash every element  𝑥𝑖 to 𝑚 uniformly distributed hashed values ℎ𝑘 𝑥𝑖

• Remember only the minimum/maximum value for each hash function ℎ𝑘

• Use these 𝑚 values to estimate 𝑛
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Generic Max Sketch Algorithm

Algorithm 1

1. Use 𝑚 different hash functions

2. For every  ℎ𝑘 and every input element  𝑥𝑖, compute  ℎ𝑘(𝑥𝑖)

3. Let  ℎ𝑘
+ = max ℎ𝑘 𝑥𝑖 be the maximum observed value for  ℎ𝑘

4. Invoke  𝑃𝑟𝑜𝑐𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(ℎ1
+, ℎ2
+, … , ℎ𝑚

+ ) to estimate 𝑛
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Other Estimation Techniques

• Bit pattern sketches

• The elements are hashed into a bit vector and the sketch holds the logical OR
of all hashed values

• Bottom-𝑚 sketches

• maintain the m minimal values
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Weighted Cardinality Estimation Problem
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Weighted Sum of a Stream

• Each element is associated with a weight

• The goal is to estimate the weighted sum 𝑤 of the distinct elements

C D B B Z D B D

𝒘 = ∑𝒘_𝒊 =
= 𝟎. 𝟓 + 𝟎. 𝟐𝟓 + 𝟏 + 𝟏. 𝟐𝟓 = 𝟑

Element Weight

C 0.5

D 0.25

B 1

Z 1.25

33



Application Example

• Stream of IP packets received by a server 𝑥1, 𝑥2, … , 𝑥𝑠

• Each packet belongs to a flow (connection) e1, 𝑒2, … , 𝑒𝑛

• Each flow  𝑒𝑗 imposes a load 𝑤𝑗 on the server

• The weighted sum 𝑤 = ∑𝑤𝑗 represents the total load imposed on the server
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Formal Definition

Instance:

A stream of weighted elements 𝑥1, 𝑥2, … , 𝑥𝑠 with repetitions, and an integer 𝑚

Let  𝑛 be the number of different elements, and let  𝑤𝑗 be the weight of 𝑒𝑗

Objective:

Find an estimate   𝑤 of  𝑤 = ∑𝑤𝑗 , using only 𝑚 storage units, where 𝑚 ≪ 𝑛
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A Unified Scheme for Generalizing 
Cardinality Estimators to Sum Aggregation



Our Contribution

• A unified scheme for generalizing any min/max estimator for the unweighted
cardinality estimation problem to an estimator for the weighted cardinality 
estimation problem.

37



Previous Works
• Cohen, 1997

• Exponential distribution ℎ(𝑒𝑗) ∼ 𝐸𝑥𝑝(𝑤𝑗)

• Minimal hash value is stored, ℎ+ = min(ℎ(𝑒𝑗))

– ℎ+ ∼ 𝐸𝑥𝑝 ∑𝑤𝑗 = 𝐸𝑥𝑝(𝑤)

• Can be obtained as a direct result of our scheme

• Jeffrey Considine, Feifei Li, George Kollios, and John W. Byers, 2004

• Bit pattern sketch
– Integer weights only

– Storage is not fixed

• Our scheme does not assume integer weights and uses fixed memory
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Observation

• All min/max sketches can be viewed as a two step computation:

1. Hash each element uniformly into (0, 1)

2. Store only the minimum/maximum observed value
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The Unified Scheme

• In the unified scheme we only change step (1) and hash each element into a Beta 
distribution. 

• The parameters of the Beta distribution are derived from the weight of the element. 
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Beta Distribution

• Defined over the interval (0, 1) 

• Has the following probability and cumulative density functions (PDF and CDF):
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Beta Distribution

• Known (and useful) identities:
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Beta Distribution

Lemma:

Let  𝑧1, 𝑧2, … , 𝑧𝑛 be independent RVs, where 𝑧𝑖 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑖 , 1

Then,

max{𝑧𝑖} ∼ 𝐵𝑒𝑡𝑎 ∑𝑤𝑖 , 1
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Corollary

• For every hash function, 

ℎ𝑘
+ = max ℎ𝑘 𝑥𝑖 ~ max 𝑈 0,1

~ max 𝐵𝑒𝑡𝑎 1,1 ∼ Beta n, 1

• Thus, estimating the value of n by Algorithm 1, is equivalent to estimating the 
value of α in the Beta(α, 1) distribution of hk

+
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The Unified Scheme

For estimating the weighted sum:

• Instead of associating each element  with a uniform hashed value

• ℎ𝑘 𝑥𝑖 ∼ 𝑈(0,1)

• We associate it with a RV taken from a Beta distribution

• ℎ𝑘 𝑥𝑖 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1

• 𝑤𝑗 is the element’s weight
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Generic Max Sketch Algorithm - Weighted

Algorithm 2

• Use 𝑚 different hash functions

• For every ℎ𝑘 and every input element 𝑥𝑖: 

1. compute ℎ𝑘(𝑥𝑖)

2. transform to  ℎ𝑘
^ 𝑥𝑖 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1

• Let ℎ𝑘
+ = max ℎ𝑘

^ 𝑥𝑖 be the maximum observed value for ℎ𝑘

• Invoke 𝑃𝑟𝑜𝑐𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(ℎ1
+, ℎ2
+, … , ℎ𝑚

+ ) to estimate the value of 𝑤
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The Unified Scheme

• Practically, if 

ℎ𝑘 𝑥𝑖 ∼ 𝑈 0,1

• Then,

ℎ 𝑥𝑖 𝑘
1/𝑤𝑗 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1
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Distributions Summary

48

Unweighted ℎ𝑘
+ ∼ 𝐵𝑒𝑡𝑎 𝑛, 1

Weighted ℎ𝑘
+ ∼ 𝐵𝑒𝑡𝑎(w = ∑𝑤𝑗 , 1)



The Unified Scheme

• The same algorithm that estimates 𝑛 in the unweighted case can estimate 𝑤 in 
the weighted case

• 𝑃𝑟𝑜𝑐𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒() is exactly the same procedure used to estimate the 
unweighted cardinality in Algorithm 1
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The Unified Scheme Lemma

Estimating  𝑤 by Algorithm 2 is equivalent to estimating  𝑛 by Algorithm 1. 

Thus, Algorithm 2 estimates  𝑤 with the same variance and bias as that of the 
underlying procedure used by Algorithm 1.
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Stochastic Averaging

• Presented by Flajolet in 1985

• Use 2 hash functions instead of  𝑚

• Overcome the computational cost at the price of negligible statistical efficiency 
in the estimator’s variance
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Stochastic Averaging

• Use 2 hash functions:

1. 𝐻1(𝑥𝑖) ∼ 1,2,… ,𝑚

2. 𝐻2 𝑥𝑖 ∼ 𝑈(0,1)

• Remember the maximum observed value of each bucket

• The generalization to weighted estimator is similar
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Generic Max Sketch Algorithm (Stochastic Averaging)

Algorithm 3

1. Use 2 different hash functions

1. 𝐻1(𝑥𝑖) ∼ 1,2,… ,𝑚

2. 𝐻2 𝑥𝑖 ∼ 𝑈(0,1)

2. For every input element 𝑥𝑖 compute 𝐻1 𝑥𝑖 and 𝐻2 𝑥𝑖

3. Let  ℎ𝑘
+ = max 𝐻2 𝑥𝑖 | 𝐻1 𝑥𝑖 = 𝑘 be the maximum observed 

value in the k’th bucket

4. Invoke  𝑃𝑟𝑜𝑐𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑆𝐴(ℎ1
+, ℎ2
+, … , ℎ𝑚

+ ) to estimate 𝑛



Corollary (Stochastic Averaging)

• bk = |{𝐻1 𝑥𝑖 = 𝑘}| = size of k’th bucket

– 𝑏𝑘 =
𝑛

𝑚
± 𝑂

𝑛

𝑚

• For every hash function,

ℎ𝑘
+ = max 𝐻2 𝑥𝑖 | 𝐻1 𝑥𝑖 = 𝑘 ~ Beta bk, 1 ∼ Beta

𝑛

𝑚
, 1

• Thus, estimating the value of 
n

m
by Algorithm 3, is equivalent to estimating the 

value of α in the Beta(α, 1) distribution of hk
+
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The Unified Scheme (Stochastic Averaging)

For estimating the weighted sum:

• Instead of associating each element  with a uniform hashed value

• 𝐻2 𝑥𝑖 ∼ 𝑈(0,1)

• We associate it with a RV taken from a Beta distribution

• 𝐻2 𝑥𝑖 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1

• 𝑤𝑗 is the element’s weight

• bk = ∑ 𝐻1 𝑥𝑖 =𝑘 𝑤𝑗 is the sum of the elements in the k’th bucket

• 𝑏𝑘 =
𝑤

𝑚
± 𝑂(

1

𝑚
∑𝑤𝑗
2)
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Generic Max Sketch Algorithm - Weighted 
(Stochastic Averaging)

Algorithm 4

1. Use 2 different hash functions

1. 𝐻1(𝑥𝑖) ∼ 1,2,… ,𝑚

2. 𝐻2 𝑥𝑖 ∼ 𝑈(0,1)

2. For every input element 𝑥𝑖: 

1. compute 𝐻1 𝑥𝑖 and 𝐻2 𝑥𝑖

2. transform to  𝐻2
^ 𝑥𝑖 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1

3. Let  ℎ𝑘
+ = max 𝐻2

^ 𝑥𝑖 | 𝐻1 𝑥𝑖 = 𝑘 be the maximum observed 
value in the k’th bucket

4. Invoke  𝑃𝑟𝑜𝑐𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑆𝐴(ℎ1
+, ℎ2
+, … , ℎ𝑚

+ ) to estimate 𝑤



The Unified Scheme

• Practically, if 

𝐻2 𝑥𝑖 ∼ 𝑈 0,1

• Then,

𝐻2 𝑥𝑖

1

𝑤𝑗 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1
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Distributions Summary

58

Unweighted ℎ𝑘
+ ∼ 𝐵𝑒𝑡𝑎

𝑛

m
, 1

Weighted ℎ𝑘
+ ∼ 𝐵𝑒𝑡𝑎(

𝑤

𝑚
=
∑𝑤𝑗

𝑚
, 1)



The Unified Scheme

• The same algorithm that estimates 𝑛 in the unweighted case can estimate 𝑤 in 
the weighted case

• 𝑃𝑟𝑜𝑐𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑆𝐴() is exactly the same procedure used to estimate the 
unweighted cardinality in Algorithm 3
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The Unified Scheme Lemma

Estimating  𝑤 by Algorithm 4 is equivalent to estimating  𝑛 by Algorithm 3. 

Thus, Algorithm 4 estimates  𝑤 with the same variance and bias as that of the 
underlying procedure used by Algorithm 3.
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Stochastic Averaging – Effect on Variance (Unweighted)

• Brings computational efficiency at the cost of a delayed asymptotical regime
(Lumbroso, 2010)

– When n is sufficiently large, the variance of each bucket size 𝑏𝑘 is negligible 

– How large n should be to obtain negligible variance of 𝑏𝑘 in the unified scheme?

• When the normalized standard deviation of each 𝑏𝑘 is < 10−3, there is negligible 
loss of statistical efficiency

– For example, when n = 106 and 𝑚 = 103⟹ 𝑉𝑎𝑟
𝑏𝑘

𝐸 𝑏𝑘
≈
𝑚

𝑛
= 10−3
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Stochastic Averaging – Effect on Variance (Weighted)

• Assuming that 
∑𝑤𝑗
2

𝑤2
= 10−6 ⟹

– The normalized standard deviation = 𝑉𝑎𝑟
𝑏𝑘

𝐸 𝑏𝑘
≈
∑𝑤𝑗
2

𝑤2
𝑚 = 10−3

• However, other choices of the weights may “delay” this bound for bigger values of n
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Stochastic Averaging – Effect on Variance (weighted)
Random Distribution of Weights

• Assume that the weights 𝑤𝑗 are drawn from a random distribution

• Using the variance definition:

63

The unified scheme can deal with unbounded 
number of weights as long as:
1. Weights are positive
2. 𝑉𝑎𝑟[𝑤𝑗] /𝐸

2[𝑤𝑗] is a small constant



Transformation Between Distributions

• Each element is hashed ℎ 𝑥𝑖 ∼ 𝑈(0,1)

• Then,
– Some estimators transform ℎ 𝑥𝑖 into another distribution

• For example, HyperLogLog (Geometrical)

– The unified scheme transforms ℎ(𝑥𝑖) into a Beta distribution 

• ℎ^(𝑥𝑖) ∼ 𝐵𝑒𝑡𝑎 (𝑤𝑗 , 1)

• Inverse-Transform Method:

64

𝑢 ∼ 𝑈 0,1 ⇒ 𝐹−1 𝑢 ∼ 𝐷

where, 
• F is the CDF of distribution D
• F is monotonically non-decreasing function
• 𝐹−1 is the inverse function



Transformation Between Distributions

• In general, ℎ 𝑥𝑖 is transformed into ℎ^ 𝑥𝑖 = 𝐹
−1 ℎ 𝑥𝑖

– Inverse-Transfom Method

• The estimator may keep the original uniform hashed value
– Without transformation 

– In this case, 𝐹(𝑥) = 𝑥
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The Unified Scheme

• The desired distribution is 𝐵𝑒𝑡𝑎 (𝑤𝑗 , 1)

– CDF: 𝐺max (𝑥) = 𝑥
𝑤𝑗

– CDF inverse: 𝐺𝑚𝑎𝑥
−1 (𝑢) = 𝑢1/𝑤𝑗

• 𝐺𝑚𝑎𝑥
−1 ℎ 𝑥𝑖 = ℎ 𝑥𝑖

1

𝑤𝑗 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1

– Inverse-Transform Method

66

To sum up:

ℎ𝑘 𝑥𝑖 ∼ 𝑈 0,1 ⟹ ℎ𝑘 𝑥𝑖
1/𝑤𝑗 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1



Weighted Generalization for Continuous U(0,1)
with Stochastic Averaging

• Chassaing estimator

• Minimal variance unbiased estimator (MVUE)

• The estimator uses uniform variables
– No transformation is needed, F−1 𝑢 = 𝑢

• Estimate =   
𝑚(𝑚 −1)

∑(1 −ℎ𝑘
+)

• Standard error = 1/ 𝑚

• Storage size 32 ∗ 𝑚 bits

67

To generalize this estimator 

Estimate =  
𝑚(𝑚 −1)

∑(1 −ℎ𝑘
+)

But now,

ℎ𝑘
+ = max{ℎ𝑘

^ 𝑥𝑖 } = max ℎ𝑘 𝑥𝑖
1/𝑤𝑗



Weighted Generalization for Continuous U(0,1)
with m hash functions

• Maximum likelihood estimator

• The estimator uses exponential random variables with parameter 1 
– 𝐹−1(𝑢) = −ln𝑢 ∼ 𝐸𝑥𝑝(1)

• Estimate  =   
𝑚

∑ℎ𝑘
+

– where ℎ𝑘
+ = max{− ln(ℎ𝑘(𝑥𝑖))}

• Standard error = 1/ 𝑚

• Storage size 32 ∗ 𝑚 bits
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Weighted Generalization for Continuous U(0,1)
with m hash functions

69

To generalize this estimator 

Estimate =  
𝑚

∑ℎ𝑘
+

But now,

ℎ𝑘
+ = max{−ln(ℎ𝑘

^ 𝑥𝑖 )} = max −ln(ℎ𝑘 𝑥𝑖

1
𝑤𝑗)

This generalization is identical to the algorithm presented by Cohen, 1995



Weighted HyperLogLog with Stochastic Averaging

• Best known algorithm in terms of the tradeoff between precision and storage size

• The estimator uses geometric random variables with success probability ½
– 𝐹−1(𝑢) = ⌊− log2 𝑢⌋ ∼ 𝐺𝑒𝑜𝑚 (1/2)

• Estimate  =   
𝛼𝑚𝑚
2

∑2−ℎ𝑘
+

– where ℎ𝑘
+ = max{⌊− log2𝐻2 𝑥𝑖 ⌋ | 𝐻1 𝑥𝑖 = 𝑘}

• Standard error = 1.04/ 𝑚

• Storage size 5 ∗ 𝑚 bits
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Weighted HyperLogLog with Stochastic Averaging

71

To generalize this estimator 

Estimate =  
𝛼𝑚𝑚
2

∑2−ℎ𝑘
+

But now,

ℎ𝑘
+ = max{⌊− log2𝐻2 𝑥𝑖

1/𝑤𝑗⌋ | 𝐻1 𝑥𝑖 = 𝑘}

• The extended algorithm offers the best performance, in terms of statistical
accuracy and memory storage, among all the other known algorithms for the
weighted problem



Conclusion
• We showed how to generalize every min/max sketch to a weighted version

• The scheme can be used for obtaining known estimators and new estimators in a 
generic way

• The proposed unified scheme uses the unweighted estimator as a black box, and 
manipulates the input using properties of the Beta distribution

• We proved that estimating the weighted sum by our unified scheme is statistically 
equivalent to estimating the unweighted cardinality

• In particular, we showed that the new scheme can be used to extend the HyperLogLog
algorithm to solve the weighted problem

• The extended algorithm offers the best performance, in terms of statistical accuracy 
and memory storage, among all the other known algorithms for the weighted problem
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Efficient Detection of Application Layer 
DDoS Attacks by a Stateless Device



DoS and DDoS

Denial of Service Attack (DoS) 

• Malicious attempt to make a server or a network resource unavailable to users

• The most common type is flooding the target resource with external requests. 
– The overload prevents/slows the resource from responding to legitimate traffic

Distributed Denial of Service Attack (DDoS)

• DoS attack where the attack traffic is launched from multiple distributed sources. 

• A DDoS attack is much harder to detect
– Multiple attackers to defend against
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Application DDoS Attacks

• Seemingly legitimate and innocent requests whose goal is to force the server to 
allocate a lot of resources in response to every single request 

• Can be activated from a small number of attacking computers

• Examples:
– HTTP request attacks: 

• Legitimate, heavy HTTP requests are sent to a web server, in an attempt to consume a lot of its resources. 

• Each request is very short, but the server needs to work very hard to serve it.

– HTTPS/SSL request attacks
• Work against certain SSL handshake functions, taking advantage of the heavy computation use by SSL

– DNS request attacks
• The attacker overwhelms the DNS server with a series of legitimate or illegitimate DNS requests
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Application DDoS Attacks

Application DDoS attacks are more difficult to deal with than classical DDoS:

• The traffic pattern is indistinguishable from legitimate traffic 

• The number of attacking machines can be significantly smaller
– Typically, it is enough for the attacker to send only hundreds of resource intensive requests, 

instead of flooding the server with millions of TCP SYNs, as in a volumetric DDoS attack
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DDoS Protection Architecture
• Mostly multi-tier:
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DDoS Protection Architecture

• As strong as its weakest link
– Often this weakest link is tier-2 or 3

– Will be the first to collapse in a targeted Application layer DDoS attack. 

• It is generally assumed that Application layer attacks cannot be detected by the first 
tier devices, but only by tier-2 and tier-3 devices, which are stateful, this is because:
– Many devices

– Does not have flow awareness, cannot perform per-flow tasks

– Dedicated to fast performance, its processing tasks must be simple and cheap

– Lacks deep knowledge of the end applications, and is unable to keep track of the association 
between packets-flows-applications
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Previous Work
• Stateless devices usually estimate the load imposed on a remote server by 

estimating the number of distinct flows
– Cardinality estimation problem

• Can detect anomalies when the number of distinct flows becomes suspiciously high
– Possibly DDoS attack

– Alternative: monitor the entropy of selected attributes in the received packets and compare to 
pre-computed profile

• Previously proposed schemes have considered all flows as imposing the same load
– This is clearly not true in a realistic case where high-workload requests require significantly more 

server efforts than simple ones 

– We solve this problem by preclassifying the incoming flows and associating them with different 
weights according to their load

79



Our Contribution

• We show how a tier-1 stateless device can acquire significant Application layer 
information and detect Application layer attacks

• Early detection will afford better overall protection
– Triggers the opening of more tier-2 and tier-3 devices

– Triggers the invocation of special tier-1 packet-based filtering rules, which will reduce the load
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Basic Scheme

• Main idea:

– classify incoming flows according to the load each of them imposes on the server

– flows that impose different loads should be mapped in advance into different 
TCP/UDP ports
• Consequently, a stateless router that receives a packet can look at the Protocol field and the 

destination port number in the packet’s header in order to know the load imposed on the 
server by the flow to which the packet belongs

– The total load imposed on the end server during a specific time interval is 

𝑤 = ∑𝑙=1
𝐶 𝑤𝑙 ∗ 𝑛𝑙

• 𝐶 is the number of weight classes

• 𝑛𝑙 is the number of flows belonging to class 𝑙

– execute an algorithm that estimates the number of flows for each class. 
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Basic Scheme
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The total load imposed on the end server during a specific time interval is 

𝑤 = ∑𝑙=1
𝐶 𝑤𝑙 ∗ 𝑛𝑙

• 𝐶 is the number of weight classes
• 𝑛𝑙 is the number of flows belonging to class 𝑙

Formally,

The problem of measuring the total load imposed on the web server during a 
specified time is now translated into the problem of estimating the number of 
flows for each class of weights.



HyperLogLog
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Example: HTTP

Assign the same TCP port to all HTTP requests that impose the same load on server:

• Requests that require a lot of processing can be assigned to port 8090 (weight 𝑤1)

• Requests that require slightly less are assigned to port 8091 (with weight 𝒘𝟐 < 𝒘𝟏)

• And so on…
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Implementation

• Straightforward for every Application layer protocol that admits a one-to-one
mapping to a TCP or a UDP port
– Each TCP or UDP flow is associated with one application layer instance

• However, not the case for HTTP, because of “persistent connection” property.
– Allows the client to send multiple HTTP requests over the same TCP connection (flow)

– Cannot tell in advance which or how many requests will be sent over the same connection

• The solution we propose is to map all light requests to one port, and to map each 
heavier request to its own port
– The weight associated with the light requests will take into account their resource consumption 

and the possibility that multiple light requests may share the same connection
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Enhanced Scheme

• Main idea:
– Instead of solving the cardinality estimation problem once per each class, the enhanced scheme 

solves the weighted cardinality estimation problem 

– The total load is estimated directly, without estimating the number of flows in each class

• The enhanced scheme with 𝒎/𝑪 storage units performs better (has much better 
variance) than any configuration of the basic scheme, even if the latter uses factor 
𝑪more storage units.
– Moreover, the enhanced scheme is agnostic to the distribution of the weights and does not need 

a priori information about the distribution of the weight classes

86



Weighted HyperLogLog
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Basic Scheme vs. Enhanced Scheme

• Minimal variance of basic scheme = 
𝒘𝟐

𝒎−𝟐𝑪
>
𝒘𝟐

𝒎−𝟐
= variance of enhanced scheme

• The enhanced scheme has smaller variance than the minimal variance of the basic 
scheme

• When the number of different classes 𝐶 >
𝑚

2
, then the variance of the basic scheme 

is infinite. 
– Moreover, even if there are only a few classes, and the statistical inefficiency can be tolerated, 

the basic scheme needs a priori information on the distribution of the weights, while the 
enhanced scheme does not.

• The enhanced scheme with 𝑚/𝐶 storage units performs better (has much better 
variance) than any configuration of the basic scheme, even if the latter uses factor 
𝐶 more storage units.

– as long as the number of weight classes satisfy 𝐶 >
𝑚

2
, and this requirement is satisfied because 

m is usually very small.
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Basic Scheme vs. Enhanced Scheme

• Minimal variance of basic scheme = 
𝒘𝟐

𝒎−𝟐𝑪
>
𝒘𝟐

𝒎−𝟐
= variance of enhanced scheme
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Estimating the Load Variance

• Main idea:
– The weighted algorithm is useful for performing management tasks

• Adding a virtual machine to a web server

• Adjusting the load balancing criteria, etc…

– Not useful for detecting an extreme and sudden increase in the load imposed on the server due 
to an Application layer attack.

• Definitions:
– n(t) = number of active flows sampled at time t over the last T units of time

– w(t) = weighted sum of these flows
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Estimating the Load Variance

•  𝑤 𝑡 is a random variable that estimates the weighted sum of the flows sampled 
during time interval [t − T, t]

• Unbiased estimator, we get that
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Load Variance
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• Variance can be affected not only by excessive load imposed by a few 
connections originated by an attacker, but also by an excessive number of new 
legitimate connections. 

• To distinguish between the two cases, we normalize the variance by dividing it 
by the number of flows n.



Normalized Load Variance
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Simulation Results
Detecting the load imposed on a server

• We study the requests received by the main web server of the Technion campus

• Assign to each request a weight that represents the load it imposes on the server

• Compare the results of the weighted scheme to the results of two benchmarks:

• Actual: 
– Determines the real load imposed on the web server during every considered time interval by 

computing the server’s average response time. 

– Actual is expected to outperform our scheme

– Of course, such a scheme cannot employed by a stateless intermediate device

• Number of Flows: 
– Uses HyperLogLog to estimate the number of distinct flows during each time period. 

• How to determine in advance the load imposed on the server by every request? 
– Because we do not have access to the server, but only to its log files, we assign weights according 

to the average size of the response file sent by the server to each request
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Simulation Results
Detecting the load imposed on a server
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We can see a strong correlation between the load estimated by our scheme and Actual:
• For example, Actual shows a temporary heavy load on the server after 17 minutes, a load that is clearly detected 

by our scheme (in blue)
• Another peak, at t = 22, is also detected by our scheme (in green)



Simulation Results
Detecting the load imposed on a server
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We can see a strong correlation between the load estimated by our scheme and Actual:
• Actual shows temporary heavy loads on the server at t = 28 (yellow) and t = 32 (orange), both clearly detected by 

our scheme as well.



Simulation Results
Detecting the load imposed on a server

• For mathematical corroboration, we measured the Pearson correlation coefficient between Actual 
and our scheme.

• Let 𝑆0 be the vector of the values of Actual, and 𝑆1 be the vector of the values of our scheme. Then:

• This ratio varies between 1 and −1: 

– the closer it is to either (−1) or to 1, the stronger the correlation between the variables; 

– the closer it is to 0, the weaker the correlation.

• Actual vs. our scheme:

– In the first trace we find that the correlation coefficient is 0.85, which indicates a very strong 
correlation between Actual and our scheme. 

– In the second trace, the correlation coefficient is 0.92, indicating even stronger correlation
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Simulation Results
Detecting the load imposed on a server

• We then measured the Pearson correlation coefficient between Actual and Number-of-Flows 

• In contrast to the strong correlation between our scheme and Actual, we can see that the correlation 
between Number-of-Flows and Actual is very weak

– In the first trace, the correlation coefficient is only 0.38

– In the second trace, the correlation coefficient is 0.23

• More specifically,

– In the first trace, the peak after 22 minutes is not identified by the Number-of-Flows scheme

– Moreover, the Number-of-Flows scheme identifies false heavy loads, for example after 1 minute
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Simulation Results
Detecting Application Layer DDoS Attacks

• We use Wireshark to capture video sessions from YouTube, and manually add three 
Application DDoS attacks to the original data: 

a) attack-1 is represented by 30 downloads of a 1-minute video stream starting at 10:00; 

b) attack-2 is represented by 40 downloads of a 1-minute video stream starting at 20:00; 

c) attack-3 = 50 downloads of a 1-minute video stream starting at 06:00.

• We estimate the load variance and the normalized load variance every Δ = 60
seconds, for 𝑇 = 1minute.
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Simulation Results
Detecting Application Layer DDoS Attacks
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One can easily see that Normalized Load scheme does not detect any of the attacks. 
• This scheme is able to detect only attacks created by a small number of connections that generate a lot of traffic. 
• Although all the attacks added to our log files were triggered by only 30-50 connections, they nonetheless had 

only a slight effect on the average amount of traffic per connection.
The three other schemes successfully detect the three attacks.



Simulation Results
Detecting Application Layer DDoS Attacks

• For comparing their performance, we define the minimal relative error as

• where, 
– 𝑋𝑎𝑡𝑡𝑎𝑐𝑘 is the minimal value computed by the scheme during an attack 

• i.e., the minimal value among its values at 10:00, 20:00 and 06:00 

– 𝑋𝑓𝑎𝑙𝑠𝑒 is the maximal value of the scheme during normal times 
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Simulation Results
Detecting Application Layer DDoS Attacks

• For weighted HyperLogLog:
– 𝑋𝑎𝑡𝑡𝑎𝑐𝑘= 23.85 (for the attack at 10:00)

– The maximal value at a normal time is 𝑋𝑓𝑎𝑙𝑠𝑒 = 20.21 (at 18:00)

• Thus, the minimal relative error is 𝜆 = 
23.85 −20.21

20.21
= 0.18

• Therefore, for this algorithm the minimal value representing an attack is (only) 
18% larger than the nearest normal value
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Simulation Results
Detecting Application Layer DDoS Attacks

• 𝜆 allows to compare the performance of the schemes and their false-detection rates 
– As 𝜆 grows, the scheme more accurately distinguish between attack and normal traffic

• Among the three schemes, the Normalized Load Variance has the best performance. 
– Largest 𝜆

– In particular, the two other schemes detect a false attack at 18:00
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Simulation Results
Detecting Application Layer DDoS Attacks
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In this scenario we change attack-2 to consist of 100 downloads of a 1-minute video stream starting at 20:00 
The main different between the two figures is that this time the Normalized Load scheme successfully detects 
attack-2 (at 20:00). However, this scheme still does not detect the two other attacks: at 10:00 and at 6:00. 
In terms of the other schemes, the Normalized Load Variance scheme still has the best performance, because the 
other two schemes detect a false attack at 18:00.



A Sliding Window Extension

• For continuous monitoring, one needs to estimate the total load every Δ seconds for 
a window of the last 𝑇 minutes 

• Instead of m buckets for a single estimator, one needs to maintain 
𝑇

Δ
∗ 𝑚 buckets

– For instance, for 𝑇 = 10, Δ = 1, if a packet is received at t = 15, its sketch is compared to the 
maximum obtained for the intervals [6, 15], [7, 16], . . . , [15, 24]

• The sliding window extension was proposed by Chabchoub (2010) for the 
unweighted HyperLogLog algorithm to avoid this penalty
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A Sliding Window Extension

• The procedure stores not only the current maximum value, but all hashed values 
that may be maximum in any future window of time

• To this end, the algorithm maintains for each bucket a sorted list of the received 
packets, each consisting of a pair (𝑅𝑘 , 𝑡𝑘)
– 𝑡𝑘 is the arrival time of the packet 

– 𝑅𝑘 is the hashed value of the packet’s flow ID 
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List Update Procedure

LFPM (List of Possible Future Maximums), and it is updated for each packet as follows:
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List Update Procedure
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A Sliding Window Extension
• We use the LFPM idea to extend the weighted HyperLogLog algorithm to get a 

sliding window version of the weighted problem 

• The stochastic averaging process of splitting the packets into m buckets remains 
unchanged; namely, a different LFPM is maintained for each bucket

• Clearly, when a packet is received, only its matched list (according to its bucket) is 
updated

• To estimate the weighted cardinality at time 𝑡:

– Extract the relevant packets from the LFPM, and compute the highest 𝐶𝑗 among them

• Independently for each bucket

– The rest of the estimation is as specified in the weighted HyperLogLog algorithm
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A Sliding Window Extension

110

The update procedure of the LFPM list does not affect the computation of the maximal hash values.

It is simply an efficient method for computing its exact value at any time, by storing only a short list of 
packets. 
Therefore, the extended algorithm has the same bias and variance as the weighted HyperLogLog



Analysis of Memory Cost

• For HyperLogLog = 𝑚 ∗ log log
𝑛

𝑚
bits

• What is the LFPM’s penalty on memory?
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Conclusion

• We show that both the basic scheme and the enhanced scheme allow the stateless 
device to estimate the total load imposed on the Application layer of a server

– We compare the performance of the enhanced scheme and the basic scheme and show that 
the enhanced scheme provides a much better variance

– However, they do not detect an extreme and sudden increase in the load due to an attack

• We present two additional schemes, that use the enhanced scheme as a building block 

– The first scheme estimates the variance of the weighted sum of the flows

– The second estimates the normalized variance of the weighted sum of the flows

• We show that the latter one is the best for detecting Application layer attacks
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Future Research



Combining Cardinality Estimation and Sampling

• We will study the problem of estimating the number of distinct elements in a stream when 
only a small sample of the stream is given

• Real-world applications of cardinality estimation algorithms are required to process large 
volumes of monitored data, making it impractical to collect and analyze the entire stream 

– For example, IP packets over a high-speed link; 100 Gbps link creates a 1 TB log file in < 1.5 minutes

– Must sample and process only a small part of the stream

– sFlow

• Sampling techniques provide greater scalability, but they also make it more difficult to infer 
the characteristics of the full stream
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Data Sampling

• Only a small sample of the data is collected (marked in red), and then analyzed

• The sample stream is

D , B , D , D

• Sample cardinality = 2

• What is the cardinality of the full (unsampled) stream?
– Is it   =   2?                (equal to the sample cardinality)

– Is it   =   2*2 = 4?        (inverse to the sampling rate)

– Something else?

C D B B Z D B D
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Combining Cardinality Estimation and Sampling

• We will present and analyze a generic algorithm for combining every cardinality 
estimation algorithm with a sampling process 

• Notations:

– 𝑋 full (unsampled) stream

– 𝑌 sample stream

– 𝑛 =  cardinality of full stream

– 𝑛𝑠 = cardinality of sample stream

• The proposed algorithm will consist two main steps:
a) Cardinality estimation of the sampled stream using any known cardinality estimator 

b) Estimation of the sampling ratio 𝑛/𝑛𝑠
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Good-Turing Frequency Estimation
• Useful in language-related tasks where one needs to determine the probability that a word will 

appear in a document

• Given a sample 𝑌 of a bigger stream 𝑋

• Notations:
– 𝑃𝑖 =   the probability that an element of 𝑋 appears in the sample 𝑖 times

– |𝐸𝑖| =   the number of elements that appear exactly 𝑖 times in the sample

• Good-Turing claims that                                                  is a consistent estimator for the probability 𝑃𝑖

• For 𝑃0,
– The probability that an element of 𝑋 does not appear in the sample at all (unseen element)

• In other words, the hidden mass can be estimated by the relative frequency of the elements that 
appear exactly once in the sample Y. 
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The Proposed Algorithm

• To estimate 𝑛𝑠 in step (a), any cardinality estimation algorithm can be used

• To estimate 𝑛/𝑛𝑠 in step (b), we note that 𝑃0 =
𝑛 − 𝑛𝑠

𝑛
and thus 

1

1 − 𝑃0
= 𝑛/𝑛𝑠. 

• Therefore, the problem of estimating 𝑛/𝑛𝑠 is reduced to estimating the probability 
𝑃0 of unseen elements
– Using Good-Turing

– Need to find the number of elements that appear exactly once in the sampled stream
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The Proposed Algorithm
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To compute the value of |𝐸1| precisely, one should keep track of all the elements in Y and 
ignore each previously encountered element. 
This is done using 𝑶(𝒍) storage units.



Combining Cardinality Estimation and Sampling

• We intend to show that the proposed algorithm does not affect the asymptotic 
unbiasedness of the original estimator. 

• We will also analyze the sampling effect on the asymptotic variance of the estimators. 

• Another goal is to reduce the memory cost
– Uses O(l) storage units, which is linear in the sample size 

– We hope to reduce this cost by estimating the value of 
𝐸1

𝑙
, instead of computing it precisely
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Estimation of Set Intersection

• Given: two sets of elements 𝐴 and 𝐵. 

• Goal: estimate the size of their intersection |𝐴 ∩ 𝐵|
– Well known problem, arises in network monitoring, database systems, data integration and 

information retrieval

– Many application scenarios are in the context of Network Functions Virtualization (NFV)

• For example, the sets might include IP addresses of packets passing through a 
router, and our goal is to determine if the two sets are similar to each other

• Can be found exactly
– Does not scale if storage is limited
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Estimation of Set Intersection

• Jaccard similarity

• Three previously proposed schemes:
1. Using inclusion-exclusion principle

2. Using Jaccard similarity (1)

3. Using Jaccard similarty (2)

• No previous analysis of them
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Estimation of Set Intersection

• We will analyze the schemes
– Efficiency

– Statistical performance (bias and variance)

– Compare between them

• We will then compute the optimal variance of any unbiased estimator
– Cramer-Rao bound 

– The variance of any unbiased estimator is at least as high as the inverse of Fisher information
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Estimation of Set Intersection

• We will present a new estimator
– Maximum Likelihood (ML) method 

– We hope to prove analytically, and/or using simulations, that our new ML estimator outperforms 
all previously known schemes

• We will address the problem of estimating the cardinality of more than two sets
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New Results



Analysis of Proposed Algorithm

• We showed that the proposed algorithm does not affect the asymptotic unbiasedness 
of the original estimator and analyzed the sampling effect on the asymptotic variance 
of the estimators. 
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New Algorithm with Subsamplimg

• The proposed algorithm computes |𝐸1| precisely
– Uses 𝑂(𝑙) storage units, linear in sample size. 

• We reduce this cost by approximating the value of |𝐸1| using a subsample U of Y
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New Algorithm with Subsamplimg
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New Algorithm with Subsamplimg

• Uniform subsampling using one-pass reservoir sampling

• Running-time complexity:
– 𝑂(𝑙 + 𝑢 · log 𝑙) = 𝑂(𝑙)

– Similar to proposed algorithm

• Main advantage is in storage:
– Algorithm 2: 𝑚 + 𝑢 units 

– Algorithm 1: 𝑚 + 𝑙 units, where 𝑢 ≪ 𝑙
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Analysis of New Algorithm

• We showed that the proposed algorithm does not affect the asymptotic unbiasedness
of the original estimator and analyzed the sampling effect on the asymptotic variance
of the estimator. 
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Analysis of New Algorithm

• In the analysis, Procedure 1 = HyperLogLog

• Asymptotic relative efficiency (ARE) = 
𝑛2

𝑚
/ 𝑉𝑎𝑟(  𝑛)

• Generalization for any cardinality estimation procedure:
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Questions?
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Thank You
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