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Overview

• Cardinality Estimation Problem

• Weighted Cardinality Estimation Problem

• The Unified Scheme
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Cardinality Estimation Problem
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Given a very long stream of elements with repetitions, 

How many are distinct? 

Motivation
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Cardinality of a Stream

• Let 𝑀 be a stream of elements with repetitions 

• 𝑁 is the number of elements called the size

• 𝑛 the number of distinct elements called cardinality
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• The problem: 
compute the cardinality n in one pass and with small fixed memory

Element Multi

C 1

D 3

B 3

Z 1

𝑵 = 𝟖
𝒏 = 𝟒
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Many Applications

Traffic analysis

Attacks detection

Genetics

Linguistic

and more…
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Exact Solution

• Maintain distinct elements already seen

counter = 3      counter = 4

• One pass, but memory in order of n

• Lower bound: Ω 𝑛 memory needed

C D B B Z D B D
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Probabilistic Solution

• Main idea: 

• relax the constraint of exact value of the cardinality

• An estimate with good precision is sufficient for the applications

• Several algorithms:

• Probabilistic counting

• HyperLogLog

• Linear Counting

• Min Count

• ….
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Probabilistic Solution

• Elements of M are hashed to random variables in (0,1)

• Idea: use the maximum\minumum to estimate the cardinality
• One pass
• Constant memory
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Probabilistic Solution

• Elements of M are hashed to random variables in (0,1)

• Intuition:

• If there are 10 distinct elements, 

• Expect the hash values to be spaced about  
1

10
th apart from each other

• 𝔼 𝑚𝑎𝑥 =
𝑛

𝑛+1
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Probabilistic Solution

C D B B Z D B D
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution

C D B B Z D B D
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• 𝔼 𝑚𝑎𝑥 =
𝑛

𝑛+1
= 0.773

• Estimated cardinality  =  3.405

• Actual cardinality = 4



Chassaing Algorithm

• Simulate m different hash functions

• m maxima  ℎ1
+, ℎ2

+, … , ℎ𝑚
+

• Estimate   =   
𝑚−1

∑(1 −ℎ𝑘
+)
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Chassaing Algorithm

• ℎ𝑘
+ ∼

𝑛

𝑛+1

• ∑ 1 − ℎ𝑘
+ ∼ ∑

1

𝑛+1
=

𝑚

𝑛+1

• Therefore,

• Estimate   =
𝑚−1

∑(1 −ℎ𝑘
+)

∼ 𝑛

22



Chassaing Algorithm

• Relative error ≈ 1 / 𝑚 for a memory of m words

• Minimal variance unbiased estimator (MVUE)
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Formal Definition

Instance:

A stream of elements  𝑥1, 𝑥2, … , 𝑥𝑠 with repetitions, and an integer 𝑚

Let 𝑛 be the number of different elements, denoted by  𝑒1, 𝑒2, … , 𝑒𝑛

Objective:

Find an estimate  𝑛 of  𝑛, using only  𝑚 storage units, where 𝑚 ≪ 𝑛
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Min/Max Sketches

• Use 𝑚 different hash functions 

• Hash every element  𝑥𝑖 to 𝑚 uniformly distributed hashed values ℎ𝑘 𝑥𝑖

• Remember only the minimum/maximum value for each hash function ℎ𝑘

• Use these 𝑚 values to estimate 𝑛
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Generic Max Sketch Algorithm

Algorithm 1

1. Use 𝑚 different hash functions

2. For every  ℎ𝑘 and every input element  𝑥𝑖, compute  ℎ𝑘(𝑥𝑖)

3. Let  ℎ𝑘
+ = max ℎ𝑘 𝑥𝑖 be the maximum observed value for  ℎ𝑘

4. Invoke  𝑃𝑟𝑜𝑐𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(ℎ1
+, ℎ2

+, … , ℎ𝑚
+ ) to estimate 𝑛
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Weighted Cardinality Estimation Problem
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Weighted Sum of a Stream

• Each element is associated with a weight

• The goal is to estimate the weighted sum 𝑤 of the distinct elements

C D B B Z D B D

𝒘 = ∑𝒘_𝒊 =
= 𝟎. 𝟓 + 𝟎. 𝟐𝟓 + 𝟏 + 𝟏. 𝟐𝟓 = 𝟑

Element Weight

C 0.5

D 0.25

B 1

Z 1.25
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Application Example

• Stream of IP packets received by a server 𝑥1, 𝑥2, … , 𝑥𝑠

• Each packet belongs to a flow (connection) e1, 𝑒2, … , 𝑒𝑛

• Each flow  𝑒𝑗 imposes a load 𝑤𝑗 on the server

• The weighted sum 𝑤 = ∑𝑤𝑗 represents the total load imposed on the server
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Formal Definition

Instance:

A stream of weighted elements 𝑥1, 𝑥2, … , 𝑥𝑠 with repetitions, and an integer 𝑚

Let  𝑛 be the number of different elements, and let  𝑤𝑗 be the weight of 𝑒𝑗

Objective:

Find an estimate   𝑤 of  𝑤 = ∑𝑤𝑗 , using only 𝑚 storage units, where 𝑚 ≪ 𝑛
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Our Contribution

• A unified scheme for generalizing any min/max estimator for the unweighted
cardinality estimation problem to an estimator for the weighted cardinality 
estimation problem.
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The Unified Scheme
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Observation

• All min/max sketches can be viewed as a two step computation:

1. Hash each element uniformly into (0, 1)

2. Store only the minimum/maximum observed value
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The Unified Scheme

• In the unified scheme we only change step (1) and hash each element into a Beta 
distribution. 

• The parameters of the Beta distribution are derived from the weight of the element. 
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Beta Distribution

Lemma:

Let  𝑧1, 𝑧2, … , 𝑧𝑛 be independent RVs, where 𝑧𝑖 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑖 , 1

Then,

max{𝑧𝑖} ∼ 𝐵𝑒𝑡𝑎 ∑𝑤𝑖 , 1
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Corollary

• For every hash function, 

ℎ𝑘
+ = max ℎ𝑘 𝑥𝑖 ~ max 𝑈 0,1

~ max 𝐵𝑒𝑡𝑎 1,1 ∼ Beta n, 1

• Thus, estimating the value of n by Algorithm 1, is equivalent to estimating the 
value of α in the Beta(α, 1) distribution of hk

+
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The Unified Scheme

For estimating the weighted sum:

• Instead of associating each element  with a uniform hashed value

• ℎ𝑘 𝑥𝑖 ∼ 𝑈(0,1)

• We associate it with a RV taken from a Beta distribution

• ℎ𝑘 𝑥𝑖 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1

• 𝑤𝑗 is the element’s weight
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Generic Max Sketch Algorithm - Weighted

Algorithm 2

• Use 𝑚 different hash functions

• For every ℎ𝑘 and every input element 𝑥𝑖: 

1. compute ℎ𝑘(𝑥𝑖)

2. transform to  ℎ𝑘
^ 𝑥𝑖 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1

• Let ℎ𝑘
+ = max ℎ𝑘

^ 𝑥𝑖 be the maximum observed value for ℎ𝑘

• Invoke 𝑃𝑟𝑜𝑐𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(ℎ1
+, ℎ2

+, … , ℎ𝑚
+ ) to estimate the value of 𝑤
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The Unified Scheme

• Practically, if 

ℎ𝑘 𝑥𝑖 ∼ 𝑈 0,1

• Then,

ℎ 𝑥𝑖 𝑘

1/𝑤𝑗 ∼ 𝐵𝑒𝑡𝑎 𝑤𝑗 , 1
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Distributions Summary

41

Unweighted ℎ𝑘
+ ∼ 𝐵𝑒𝑡𝑎 𝑛, 1

Weighted ℎ𝑘
+ ∼ 𝐵𝑒𝑡𝑎(w = ∑𝑤𝑗 , 1)



The Unified Scheme

• The same algorithm that estimates 𝑛 in the unweighted case can estimate 𝑤 in 
the weighted case

• 𝑃𝑟𝑜𝑐𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒() is exactly the same procedure used to estimate the 
unweighted cardinality in Algorithm 1
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The Unified Scheme Lemma

Estimating  𝑤 by Algorithm 2 is equivalent to estimating  𝑛 by Algorithm 1. 

Thus, Algorithm 2 estimates  𝑤 with the same variance and bias as that of the 
underlying procedure used by Algorithm 1.
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Weighted Generalization for Chassaing Algorithm

• Estimate  =   
𝑚−1

∑(1 −ℎ𝑘
+)

• But now,

ℎ𝑘
+ = max{ℎ𝑘

^ 𝑥𝑖 } = max ℎ𝑘 𝑥𝑖
1/𝑤𝑗
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Stochastic Averaging

• Presented by Flajolet in 1985

• Use 2 hash functions instead of  𝑚

• Overcome the computational cost at the price of negligible statistical efficiency 
in the estimator’s variance
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Stochastic Averaging

• Use 2 hash functions:

1. 𝐻1(𝑥𝑖) ∼ 1,2,… ,𝑚

2. 𝐻2 𝑥𝑖 ∼ 𝑈(0,1)

• Remember the maximum observed value of each bucket

• The generalization to weighted estimator is similar
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Simulation

• We simulate a stream of weighted elements:

• 𝑛 elements from 𝑟 weight classes

• Each class is associated with a different weight, 𝑤𝑗 ∈ [𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥]

• Weights distributions:

• Uniform distribution: 𝑓𝑗 =
1

𝑟

• Normal distribution around  
1

2
(𝑤𝑚𝑖𝑛 + 𝑤𝑚𝑎𝑥)
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Method-1 (Benchmark)

• We simulate a new stream of 𝑤 unweighted elements 𝑒1, 𝑒2, . . . , 𝑒𝑤

• The cardinality of the new stream is equal to the weighted sum  w

• We then run the unweighted algorithm, without weighted adaptation
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Method-2 (Unified Scheme)

• We apply our unified scheme and generalize the unweighted algorithm into a 
weighted algorithm

• We then run it on the original weighted input stream
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Results – Chassaing Algorithm

𝑛 = 100,000 ; 𝑚 = 32 ; 10,000 runs

weight parameters bias
variance

ratiodistribution #classes Method-1 Method-2

uniform 16 0.00011 0.00046 0.986

uniform 64 0.00131 0.00056 1.024

uniform 512 0.00247 0.00134 0.979

normal 16 0.00252 0.00119 1.014

normal 64 0.00048 0.00432 1.006

normal 512 0.00274 0.00051 0.995
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Conclusion

• We showed how to generalize every min/max sketch to a weighted version

• The proposed unified scheme uses the unweighted estimator as a black box, and 
manipulates the input using properties of the Beta distribution

• We proved that estimating the weighted sum by our unified scheme is statistically 
equivalent to estimating the unweighted cardinality
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Questions?
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Thank You
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