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Cardinality Estimation Problem



Motivation

Given a very long stream of elements with repetitions,

How many are distinct?



Cardinality of a Stream

 Let M be a stream of elements with repetitions

e N isthe number of elements called the size
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 nthe number of distinct elements called cardinality

oeeeeeo—

* The problem:
compute the cardinality n in one pass and with small fixed memory
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Exact Solution

* Maintain distinct elements already seen
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counter=3 counter =4

* One pass, but memory in order of n

* Lower bound: Q2(n) memory needed



Probabilistic Solution

* Main idea:
* relax the constraint of exact value of the cardinality
* An estimate with good precision is sufficient for the applications

e Several algorithms:
* Probabilistic counting
* HyperLoglog
* Linear Counting
* Min Count



Probabilistic Solution

Elements of M are hashed to random variables in (0,1)
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0 Z
ldea: use the maximum\minumum to estimate the cardinality

* One pass
* Constant memory
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Probabilistic Solution

* Elements of M are hashed to random variables in (0,1)

* |ntuition:
* If there are 10 distinct elements,

1
* Expect the hash values to be spaced about Eth apart from each other

 E(max) = ﬁ
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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Probabilistic Solution
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e E(max) = — = 0.773

n+1

e Estimated cardinality = 3.405

* Actual cardinality =4
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Chassaing Algorithm

Simulate m different hash functions
 mmaxima hi,hJ,.., hH

m-—1
Y(1-hy)

Estimate =
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e Estimate

Chassaing Algorithm
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Chassaing Algorithm

* Relative error = 1 //m for a memory of m words

 Minimal variance unbiased estimator (MVUE)
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Formal Definition

Instance:

A stream of elements x,, x,, ..., x, with repetitions, and an integer m
Let n be the number of different elements, denoted by e, e,, ..., e,

Objective:

Find an estimate 71 of n, using only m storage units, where m < n
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Min/Max Sketches

Use m different hash functions
Hash every element x; to m uniformly distributed hashed values h;, (x;)
Remember only the minimum/maximum value for each hash function h;,

Use these m values to estimate n
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Generic Max Sketch Algorithm

Algorithm 1

1. Use m different hash functions

2. Forevery hj and every input element x;, compute hy(x;)

3. Let hy = max{h,(x;)} be the maximum observed value for hy
4. Invoke ProcEstimate(hi,hJ,...,h) to estimaten
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Weighted Cardinality Estimation Problem



Weighted Sum of a Stream

 Each element is associated with a weight

* The goal is to estimate the weighted sum w of the distinct elements
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= 05 + 025 + 1 + 1.25 = 3
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Application Example

Stream of IP packets received by a server x4, x5, ..., Xg L e e

Each packet belongs to a flow (connection) eq, e5, ..., e, / e

Kick-off game |

& Users sleep-in on Superbowl 1
%[ Saturday and Sunday Sunday

Each flow e; imposes a load w; on the server SRR o v,

The weighted sum w = »w; represents the total load imposed on the server
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Formal Definition

Instance:

A stream of weighted elements x4, x», ..., X, with repetitions, and an integer m

Let n be the number of different elements, and let w; be the weight of ¢;

Objective:

Find an estimate w of w = Ywj;, using only m storage units, where m < n
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Our Contribution

* A unified scheme for generalizing any min/max estimator for the unweighted
cardinality estimation problem to an estimator for the weighted cardinality
estimation problem.
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The Unified Scheme



Observation

* All min/max sketches can be viewed as a two step computation:
1. Hash each element uniformly into (0O, 1)
2. Store only the minimum/maximum observed value
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The Unified Scheme

* In the unified scheme we only change step (1) and hash each element into a Beta
distribution.

 The parameters of the Beta distribution are derived from the weight of the element.
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Beta Distribution

Lemma:

Let z4, 25, ..., Z, beindependent RVs, where z; ~ Beta(w;, 1)
Then,

max{z;} ~ Beta(Yw; 1)
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Corollary

* For every hash function,

hi = max{h;(x;)} ~ max{U(0,1)}
~ max{Beta(1,1)} ~ Beta(n,1)

* Thus, estimating the value of n by Algorithm 1, is equivalent to estimating the
value of ain the Beta(a, 1) distribution of h;’

37



The Unified Scheme

For estimating the weighted sum:

Instead of associating each element with a uniform hashed value
° hk(xi) ~ U(011)

We associate it with a RV taken from a Beta distribution
* hy(x;) ~ Beta(wj, 1)

* w; is the element’s weight
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Generic Max Sketch Algorithm - Weighted

Algorithm 2

 Use m different hash functions

* For every h;, and every input element x;:
1. compute hi (x;)

2. transformto hy(x;) ~ Beta(wj, 1)

* Let h{ = max{hy(x;)} be the maximum observed value for h;

* Invoke ProcEstimate(h{, h3, ..., hi) to estimate the value of w
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The Unified Scheme

* Practically, if

hy (x;) ~ U(0,1)

h(x;), ~ Beta(wj, 1)
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Distributions Summary

Unweighted

Weighted

hi ~ Beta(n, 1)

hiy ~ Beta(w = Yw;, 1)
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The Unified Scheme

The same algorithm that estimates n in the unweighted case can estimate w in
the weighted case

ProcEstimate() is exactly the same procedure used to estimate the
unweighted cardinality in Algorithm 1
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The Unified Scheme Lemma

Estimating w by Algorithm 2 is equivalent to estimating n by Algorithm 1.

Thus, Algorithm 2 estimates w with the same variance and bias as that of the
underlying procedure used by Algorithm 1.
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Weighted Generalization for Chassaing Algorithm

m-—1
Y(1 -hy)

e Estimate =

 But now,

hi = max{hy(x;)} = max{hy(x;)*/"i}
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Stochastic Averaging

Presented by Flajolet in 1985
Use 2 hash functions instead of m

Overcome the computational cost at the price of negligible statistical efficiency
in the estimator’s variance
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Stochastic Averaging

e Use 2 hash functions:
1. Hi(x;) ~ {1,2,..,m}
2. Hy(x;)) ~ U(01)

e Remember the maximum observed value of each bucket

* The generalization to weighted estimator is similar
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Simulation

 We simulate a stream of weighted elements:
* n elements from r weight classes

* Each class is associated with a different weight, w; € [Wyin , Winax]

* Weights distributions:

e Uniform distribution:fj =

e Normal distribution around

N|Rr X |-

(Wmin + Wmax)
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Method-1 (Benchmark)

* We simulate a new stream of w unweighted elements e, e,, ..., e,
* The cardinality of the new stream is equal to the weighted sum w

 We then run the unweighted algorithm, without weighted adaptation
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Method-2 (Unified Scheme)

 We apply our unified scheme and generalize the unweighted algorithm into a
weighted algorithm

* We then run it on the original weighted input stream
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Results — Chassaing Algorithm

distribution  #classes
uniform 16
uniform 64
uniform 512
normal 16
normal 64
normal 512
n = 100,000 ;

Method-1

0.00011
0.00131
0.00247
0.00252
0.00048
0.00274

m = 32

)

Method-2

0.00046
0.00056
0.00134
0.00119
0.00432
0.00051

variance
ratio

0.986
1.024
0.979
1.014
1.006
0.995

10,000 runs
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Conclusion

We showed how to generalize every min/max sketch to a weighted version

The proposed unified scheme uses the unweighted estimator as a black box, and
manipulates the input using properties of the Beta distribution

We proved that estimating the weighted sum by our unified scheme is statistically
equivalent to estimating the unweighted cardinality



Questions?
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Thank You



