The Weighted Cardinality Estimation Problem

Aviv Yehezkel

Ph.D. Seminar

Supervisors: Prof. Reuven Cohen and Dr. Liran Katzir

Overview

• Cardinality Estimation Problem

• Weighted Cardinality Estimation Problem

• The Unified Scheme

Cardinality Estimation Problem

Motivation

Given a very long stream of elements with repetitions,

How many are distinct?

Cardinality of a Stream

- Let *M* be a stream of elements with repetitions
 - *N* is the number of elements called the size
 - *n* the number of distinct elements called cardinality

-C - D - B - B - Z - D - B - D

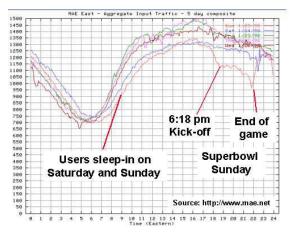
N = 8n = 4

Element	Multi
С	1
D	3
В	3
Z	1

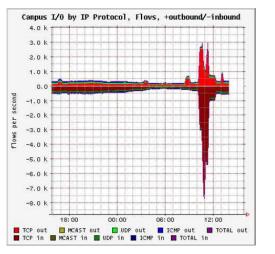
• The problem:

compute the cardinality n in one pass and with small fixed memory

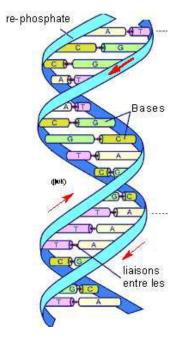
Many Applications



Traffic analysis



Attacks detection



Genetics

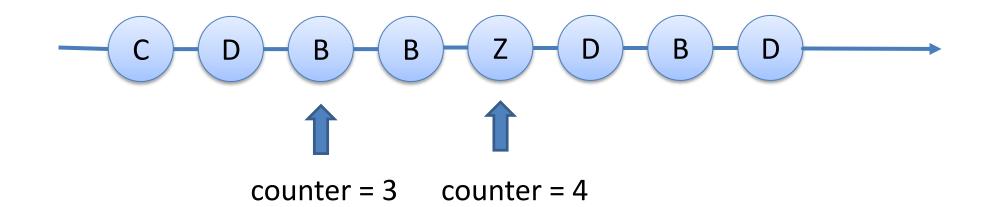
and more...

Linguistic

6

Exact Solution

• Maintain distinct elements already seen

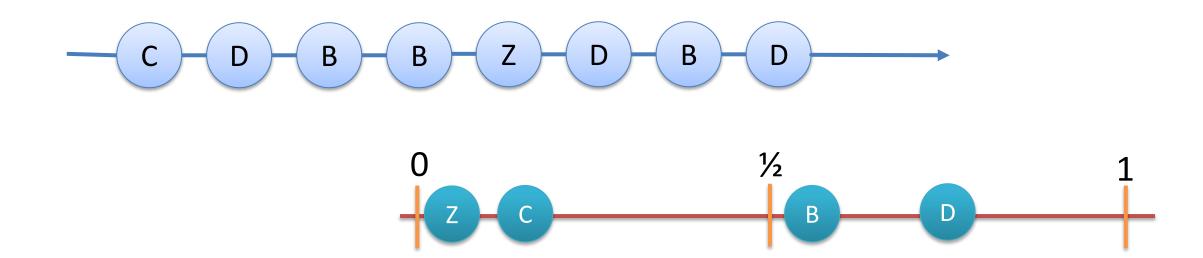


- One pass, but memory in order of n
- Lower bound: $\Omega(n)$ memory needed

- Main idea:
 - relax the constraint of exact value of the cardinality
 - An estimate with good precision is sufficient for the applications

- Several algorithms:
 - Probabilistic counting
 - HyperLogLog
 - Linear Counting
 - Min Count
 -

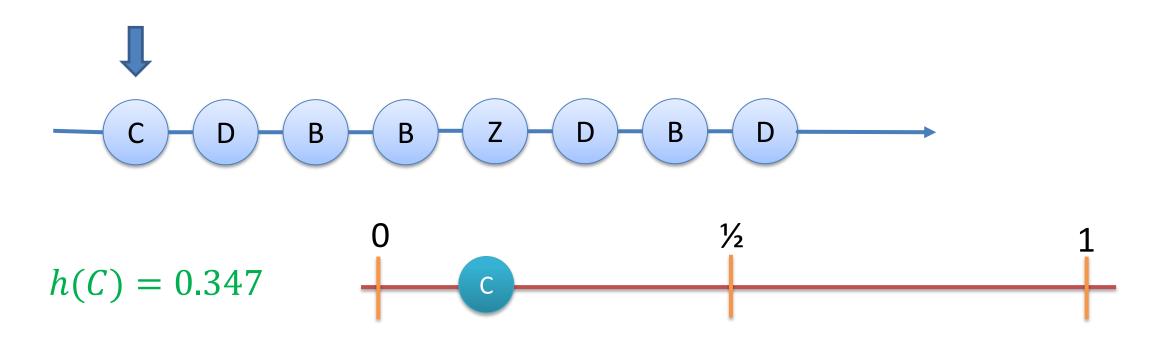
• Elements of M are hashed to random variables in (0,1)



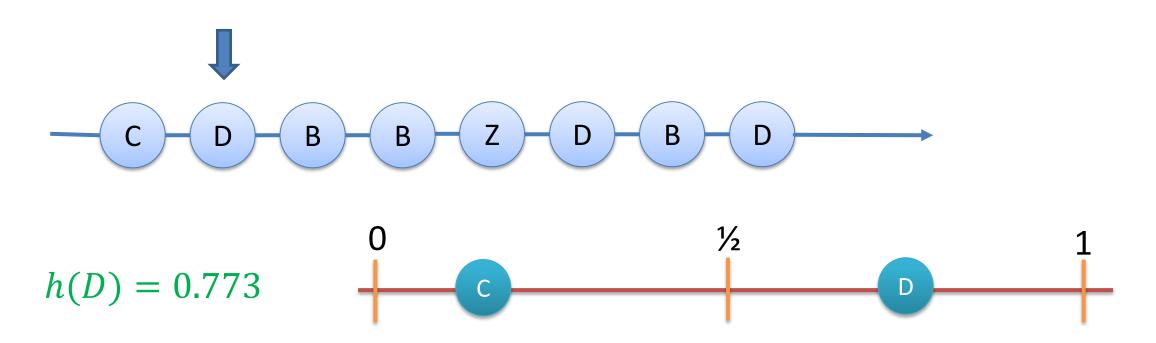
- Idea: use the maximum\minumum to estimate the cardinality
 - One pass
 - Constant memory

- Elements of M are hashed to random variables in (0,1)
- Intuition:
 - If there are 10 distinct elements,
 - Expect the hash values to be spaced about $\frac{1}{10}$ th apart from each other

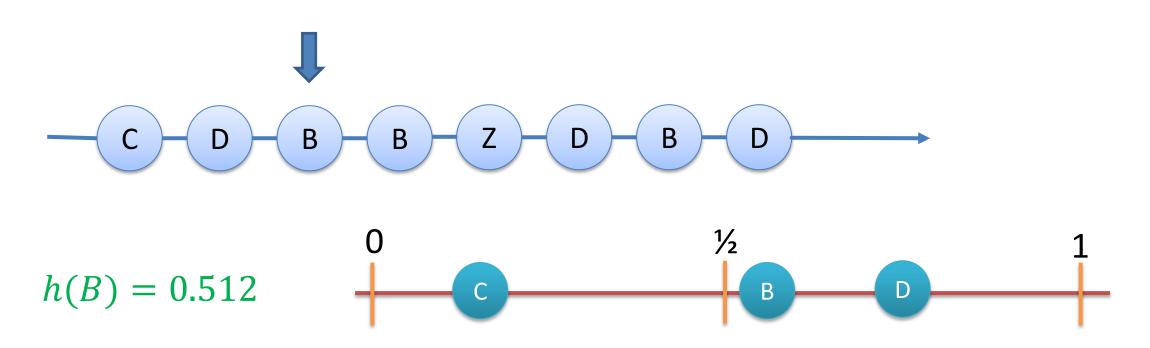
•
$$\mathbb{E}(max) = \frac{n}{n+1}$$



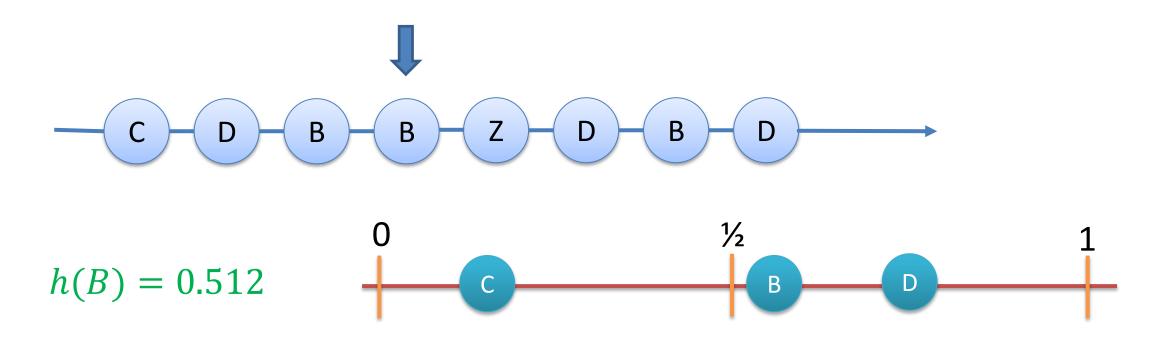
$$h^+ = 0.347$$



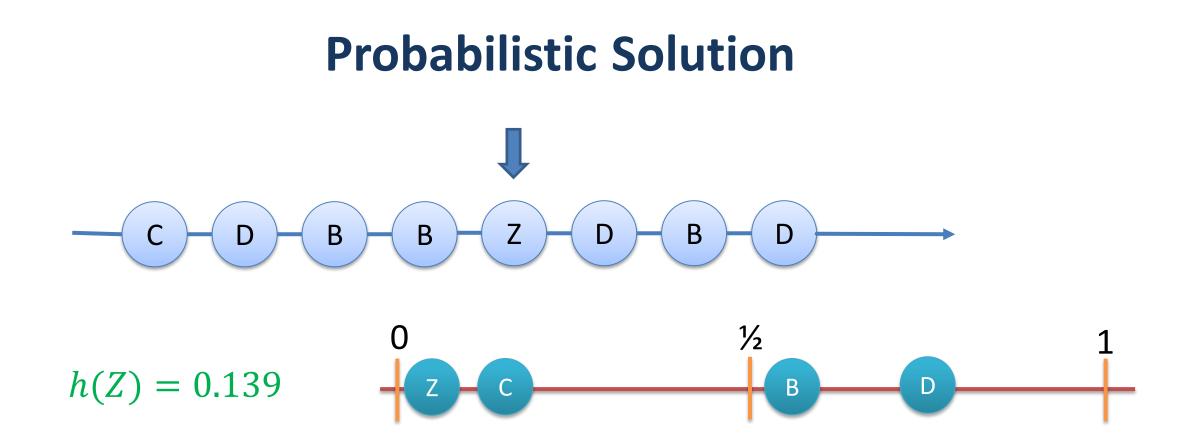
$$h^+ = 0.773$$



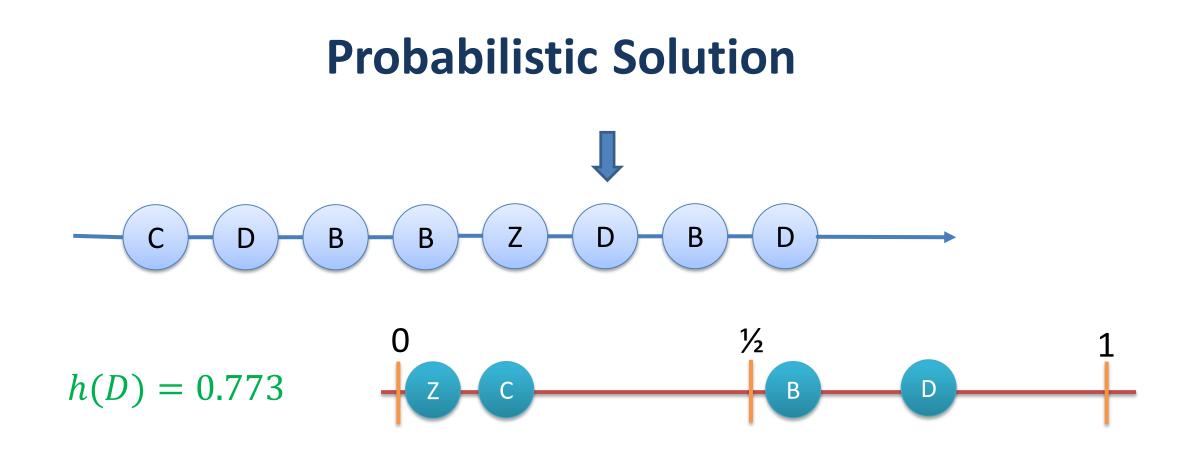
$$h^+ = 0.773$$



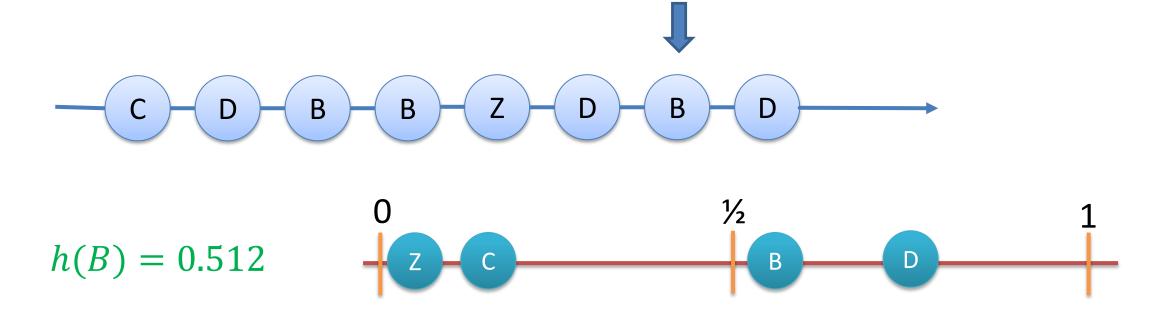
$$h^+ = 0.773$$



$$h^+ = 0.773$$



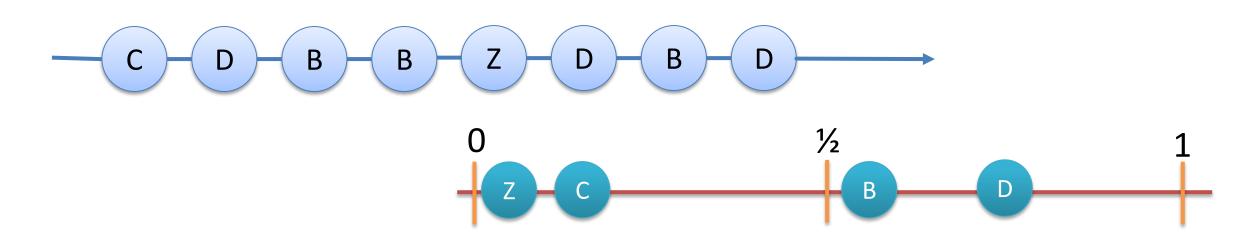
$$h^+ = 0.773$$



$$h^+ = 0.773$$

Probabilistic Solution С В Ζ В D В D D 1/2 0 h(D) = 0.773С Ζ В D

$$h^+ = 0.773$$



- $\mathbb{E}(max) = \frac{n}{n+1} = 0.773$
- Estimated cardinality = 3.405
- Actual cardinality = 4

Chassaing Algorithm

- Simulate m different hash functions
 - m maxima $h_1^+, h_2^+, ..., h_m^+$

• Estimate =
$$\frac{m-1}{\sum(1-h_k^+)}$$

Chassaing Algorithm

•
$$h_k^+ \sim \frac{n}{n+1}$$

•
$$\sum (1 - h_k^+) \sim \sum \frac{1}{n+1} = \frac{m}{n+1}$$

• Therefore,

• Estimate =
$$\frac{m-1}{\sum(1-h_k^+)} \sim n$$

Chassaing Algorithm

- Relative error $\approx 1 / \sqrt{m}$ for a memory of m words
- Minimal variance unbiased estimator (MVUE)

Formal Definition

Instance:

A stream of elements $x_1, x_2, ..., x_s$ with repetitions, and an integer mLet n be the number of different elements, denoted by $e_1, e_2, ..., e_n$

Objective:

Find an estimate \hat{n} of n, using only m storage units, where $m \ll n$

Min/Max Sketches

- Use *m* different hash functions
- Hash every element x_i to m uniformly distributed hashed values $h_k(x_i)$
- Remember only the minimum/maximum value for each hash function h_k
- Use these *m* values to estimate *n*

Generic Max Sketch Algorithm

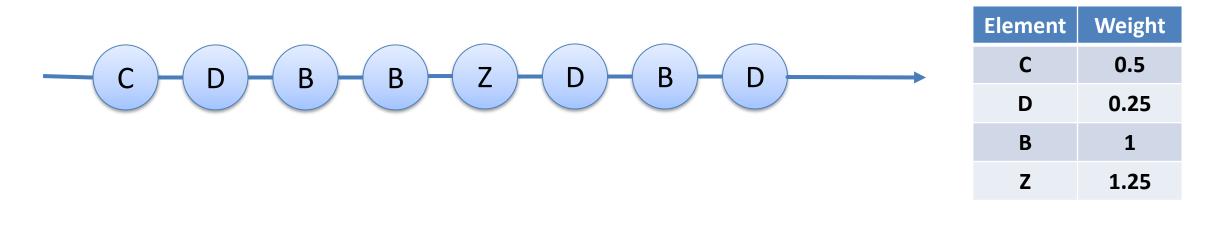
Algorithm 1

- 1. Use *m* different hash functions
- 2. For every h_k and every input element x_i , compute $h_k(x_i)$
- 3. Let $h_k^+ = \max\{h_k(x_i)\}\$ be the maximum observed value for h_k
- 4. Invoke $ProcEstimate(h_1^+, h_2^+, ..., h_m^+)$ to estimate n

Weighted Cardinality Estimation Problem

Weighted Sum of a Stream

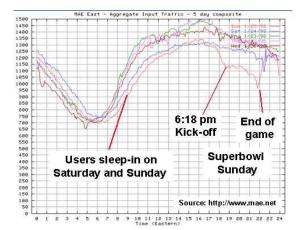
- Each element is associated with a weight
- The goal is to estimate the weighted sum *w* of the distinct elements



$$w = \sum w_i = 0.5 + 0.25 + 1 + 1.25 = 3$$

Application Example

- Stream of IP packets received by a server x_1, x_2, \dots, x_s
- Each packet belongs to a flow (connection) e_1, e_2, \dots, e_n
- Each flow e_i imposes a load w_i on the server



• The weighted sum $w = \sum w_j$ represents the total load imposed on the server

Formal Definition

Instance:

A stream of weighted elements $x_1, x_2, ..., x_s$ with repetitions, and an integer mLet n be the number of different elements, and let w_j be the weight of e_j

Objective:

Find an estimate \widehat{w} of $w = \sum w_j$, using only m storage units, where $m \ll n$

Our Contribution

• A unified scheme for generalizing any min/max estimator for the unweighted cardinality estimation problem to an estimator for the weighted cardinality estimation problem.

The Unified Scheme

Observation

- All min/max sketches can be viewed as a two step computation:
 - **1**. Hash each element uniformly into (0, 1)
 - 2. Store only the minimum/maximum observed value

The Unified Scheme

- In the unified scheme we only change step (1) and hash each element into a Beta distribution.
- The parameters of the Beta distribution are derived from the weight of the element.

Beta Distribution

Lemma:

Let $z_1, z_2, ..., z_n$ be independent RVs, where $z_i \sim Beta(w_i, 1)$ Then,

$$\max\{z_i\} \sim Beta(\sum w_i, 1)$$

Corollary

• For every hash function,

$$h_k^+ = \max\{h_k(x_i)\} \sim \max\{U(0,1)\}$$

~ $\max\{Beta(1,1)\} \sim Beta(n,1)$

• Thus, estimating the value of n by Algorithm 1, is equivalent to estimating the value of α in the Beta(α , 1) distribution of h_k^+

The Unified Scheme

For estimating the weighted sum:

- Instead of associating each element with a uniform hashed value
 - $h_k(x_i) \sim U(0,1)$
- We associate it with a RV taken from a Beta distribution
 - $h_k(x_i) \sim Beta(w_j, 1)$
 - w_j is the element's weight

Generic Max Sketch Algorithm - Weighted

Algorithm 2

- Use *m* different hash functions
- For every h_k and every input element x_i :
 - 1. compute $h_k(x_i)$
 - 2. transform to $h_k^{(x_i)} \sim Beta(w_j, 1)$
- Let $h_k^+ = \max\{h_k^{\hat{}}(x_i)\}\)$ be the maximum observed value for h_k
- Invoke $ProcEstimate(h_1^+, h_2^+, ..., h_m^+)$ to estimate the value of w

The Unified Scheme

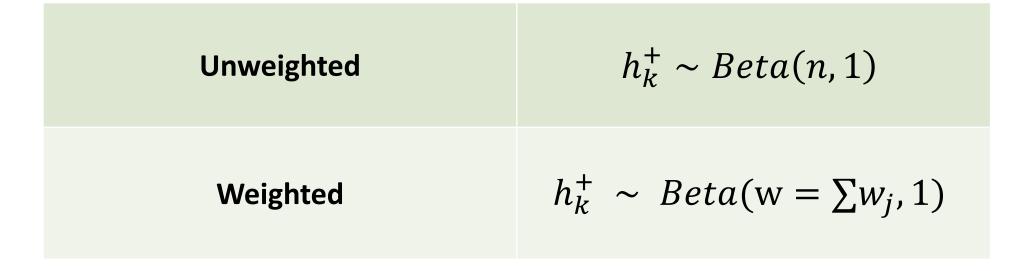
• Practically, if

 $h_k(x_i) \sim U(0,1)$

• Then,

$$h(x_i)_k^{1/w_j} \sim Beta(w_j, 1)$$

Distributions Summary



The Unified Scheme

- The same algorithm that estimates *n* in the unweighted case can estimate *w* in the weighted case
- *ProcEstimate()* is exactly the same procedure used to estimate the unweighted cardinality in Algorithm 1

The Unified Scheme Lemma

Estimating w by Algorithm 2 is equivalent to estimating n by Algorithm 1.

Thus, Algorithm 2 estimates w with the same variance and bias as that of the underlying procedure used by Algorithm 1.

Weighted Generalization for Chassaing Algorithm

• Estimate =
$$\frac{m-1}{\sum(1-h_k^+)}$$

• But now,

$$h_k^+ = \max\{h_k^{(x_i)}\} = \max\{h_k(x_i)^{1/w_j}\}$$

Stochastic Averaging

- Presented by Flajolet in 1985
- Use 2 hash functions instead of *m*
- Overcome the computational cost at the price of negligible statistical efficiency in the estimator's variance

Stochastic Averaging

- Use 2 hash functions:
 - 1. $H_1(x_i) \sim \{1, 2, ..., m\}$
 - 2. $H_2(x_i) \sim U(0,1)$
- Remember the maximum observed value of each bucket
- The generalization to weighted estimator is similar

Simulation

- We simulate a stream of weighted elements:
 - *n* elements from *r* weight classes
 - Each class is associated with a different weight, $w_j \in [w_{min}, w_{max}]$
- Weights distributions:
 - Uniform distribution: $f_j = \frac{1}{r}$
 - Normal distribution around $\frac{1}{2}(w_{min} + w_{max})$

Method-1 (Benchmark)

- We simulate a new stream of w unweighted elements e_1, e_2, \ldots, e_w
- The cardinality of the new stream is equal to the weighted sum w
- We then run the unweighted algorithm, without weighted adaptation

Method-2 (Unified Scheme)

- We apply our unified scheme and generalize the unweighted algorithm into a weighted algorithm
- We then run it on the original weighted input stream

Results – Chassaing Algorithm

weight parameters		bias	
#classes	Method-1	Method-2	variance ratio
16	0.00011	0.00046	0.986
64	0.00131	0.00056	1.024
512	0.00247	0.00134	0.979
16	0.00252	0.00119	1.014
64	0.00048	0.00432	1.006
512	0.00274	0.00051	0.995
	#classes 16 64 512 16 16 64	#classes Method-1 16 0.00011 64 0.00131 512 0.00247 16 0.00252 64 0.00048	#classesMethod-1Method-2160.000110.00046640.001310.000565120.002470.00134160.002520.00119640.000480.00432

n = 100,000; m = 32; 10,000 runs

Conclusion

- We showed how to generalize every min/max sketch to a weighted version
- The proposed unified scheme uses the unweighted estimator as a black box, and manipulates the input using properties of the Beta distribution
- We proved that estimating the weighted sum by our unified scheme is statistically equivalent to estimating the unweighted cardinality

Questions?

Thank You